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RESUMO  

 

A humanidade usou e continua consumindo em grande quantidade os 

recursos não-renováveis do planeta como petróleo, gás natural e carvão 

mineral para suprir suas necessidades energéticas. Somente nas últimas 

duas décadas que outras fontes de energia renováveis, como a solar 

fotovoltaica e a eólica, passaram a se tornar relevantes na geração de 

energia elétrica em nível mundial. Instalações de sistemas fotovoltaicos 

ao redor do mundo atingiram crescimento da ordem de 40% durante os 

últimos quinze anos. Entretanto, a grande maioria destes sistemas, (acima 

de 90%), estão localizados em regiões onde o recurso solar não é tão 

abundante, ou seja, fora da região dos trópicos do planeta. Devido a este 

fato, ao tentar incorporar a energia solar fotovoltaica às redes elétricas, 

uma pergunta que sempre surge está relacionada a variação desta forma 

de geração de energia elétrica com a produção alternante durante o dia 

devido ao movimento das nuvens e total ausência no período noturno. 

Mesmo assim, em alguns países, já se atinge percentuais em torno de 5 a 

10% de contribuição da energia elétrica proveniente de energia solar 

fotovoltaica. Passa a ser desafiador a inserção dessa fonte de energia à 

rede, de maneira intensiva, em paralelo com os recursos já existentes (em 

sua maioria ainda de origem fóssil). Nesta tese, foi avaliada a previsão do 

recurso solar em curtíssimo prazo (como 15-min, 30-min e uma hora) para 

uma região tropical do planeta, neste caso em Cingapura, ilha que se 

localiza próxima à linha do equador, no Sudeste Asiático. Esta tese foca 

em métodos existentes de previsão de irradiância, mas também explora 

uma nova proposta híbrida, adaptada a uma localidade tropical. Além das 

previsões de irradiação solar, simulações de sistemas fotovoltaicos e o 

cálculo de seu desempenho foram estudados e avaliados de modo a se 

prever quanto de energia elétrica é produzida com a mesma antecedência 

dada nos produtos de previsão do recurso solar. A influência da gaze de 

queimada foi um fenômeno particular, comum na Cingapura de hoje, que 

afeta o desempenho de sistemas fotovoltaicos e que foi investigado em 

detalhe. Todo o trabalho foi validado por redes detalhadas de estações 

meteorológicas em solo e também através de monitoramento de sistemas 

fotovoltaicos por toda Cingapura. 

 

Palavras-chave: irradiação solar, previsão da irradiação solar, sistemas 
fotovoltaicos conectados à rede, simulação e análise de desempenho de 

sistemas fotovoltaicos, regiões tropicais.  
 

  



 

 

  



ABSTRACT 

 

Humanity has used and continues to consume in great proportion non-

renewable energy resources of the planet such as oil, natural gas and coal 

in order to fulfil its energy needs. It was only during the past two decades 

that other sources of renewable energy such as solar photovoltaics (PV) 

and wind energy became somewhat relevant towards electricity 

generation in the world. PV installations worldwide have reached a 

compound annual growth rate of ~40% for the last fifteen years. However, 

the great majority of these systems (over 90% of them) are located where 

the solar energy resource is not the most abundant – outside of the tropical 

regions of the planet. While trying to incorporate solar energy PV into 

electrical power grids, one common question which arises is related to the 

variable aspect of this form of energy generation – with alternating 

production during the day due to cloud motion, and total absence during 

night time. Nonetheless, in some countries, contribution ratios of 5 to 10% 

of electrical energy from solar PV have been achieved. It becomes then 

challenging to integrate this source of energy into grids in a professional 

way, in parallel with existing resources (mostly still fossil-fuel-based). In 

this thesis, short-term forecasting (for time horizons such as 15-min, 30-

min and 1-hour) of the solar resource was investigated in a tropical region 

of the world – in Singapore, 1° North of the Equator, in Southeast Asia. 

This thesis focuses on existing methods for irradiance forecasting, but 

also explores a novel Hybrid proposal, tailored to the tropical 

environment at hand. Beyond the forecast of the solar energy irradiance 

ahead of time, PV system simulation and performance assessment were 

studied and evaluated with the goal of predicting how much electricity is 

produced in the same time frame given by the solar irradiance forecasting 

products. The influence of haze was a particular phenomenon, common 

in today’s Singapore, which affects PV system performance and which 

was investigated in detail. All work has been validated by a 

comprehensive network of ground-based meteorological stations, as well 

as by various PV system monitoring sites throughout Singapore. 

 
Keywords: solar irradiation, solar irradiation forecasting, grid-

connected PV systems, PV systems simulation and performance 

assessment, tropical regions. 
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1. INTRODUCTION 

 

1.1 OVERVIEW 

Humanity’s modern energy utilization pattern has relied heavily on 

fossil-fuels. The primary sources consumed through the years were, and 

are oil, coal and natural gas (IEA, 2014a). Through the past many 

decades, some countries successfully implemented renewable energy into 

their energy matrices – primarily hydropower – this being the case for 

locations with abundant natural resources and privileged terrains. 

Examples of such nations are Canada, the United States, Brazil, China 

and Norway. Other types of renewable energy sources used by societies 

have been vegetable coal, but primarily wood through time. It is only 

recently that more modern forms of renewable energy such as solar 

photovoltaics (PV), solar thermal, wind and geothermal have been added 

as energy generation sources in considerable volumes. 

The presence of solar photovoltaics as a contributor to the electric 

power generation mix around the world has increased substantially during 

the past two decades. From having crossed the 1 GWp
1 installed capacity 

in year 2000, the world’s total cumulative solar PV system deployment 

reached the 178 GWp-mark at the end of 2014, which is equivalent to a 

compound annual growth rate (CAGR) of ~40% over the mentioned 15-

year period. Figure 1 illustrates this exponential growth in the mentioned 

time window (SPE, 2015). 

Especially in countries with high adoption of photovoltaics, the 

solar power fed into the electric grid can contribute to a considerable 

amount of peak demand needs. On 18th August 2014, as an example, 

~25% of the peak domestic demand in Germany was met by 

photovoltaics. Adding its capacities from wind and biomass sources, it 

was already the case that ~75% of the energy needs of Germany, a country 

with a population of circa 80 million people, were fully powered by 

renewables at least for a given moment in time on the mentioned day 

(RENEWABLES_INTERNATIONAL, 2014). 

Germany has led the way in solar photovoltaic implementation 

worldwide, with 38.2 GWp of installed PV capacity deployed by 2014 

(IEA, 2014c). These installations accounted for 5.7% of the entire 

country’s electricity needs in 2014 (AGEB, 2014). In the Southern state 

                                                        
1 Wp = Watt-peak. As per International Electrotechnical Commission (IEC) standards (IEC, 2011) for the 

gauging of photovoltaic modules, the Standard Test Conditions (STC) are the laboratory test conditions of 

1,000 W/m2 of irradiance, 25°C of PV cell temperature and spectral distribution of light equivalent to 1.5 AM 

(air mass). 
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of Bavaria, where solar adoption is stronger due primarily to a more 

generous solar resource availability, the nearly half a million PV systems 

(equivalent to ~11 GWp of capacity) met circa 12% of the electricity 

needs of the state in the same year (VBEW, 2014). The German Solar 

Industry Association (BSW) expects that 10% of the entire electricity 

needs of Germany will be covered by solar PV by 2020, followed by a 

20% contribution by 2030 (BSW, 2013). 

 

 

Figure 1: Solar photovoltaics worldwide growth from 2000 to 2014 (SPE, 

2015) 

Table 1 illustrates where market leaders in solar PV adoption are 

located in the world, here as shown by a second source in IEA. As of the 

end of 2014, the top five markets for cumulative installed capacity were 

Germany, China, Japan, Italy, and the United States, with a considerable 

installation volume gap between the fifth spot and the remaining countries 

in the top-ten list – France, Spain, United Kingdom, Australia and 

Belgium. The entire European continent alone accounts for half of all 

installed PV power on the planet (IEA, 2014c). 

All market leaders except for a portion of Australia are located 

outside of the tropical regions of the world, the areas between the tropics 

of Cancer (~23°N) and Capricorn (~23°S), also known as the sun-belt. 

The tropics have higher levels of annual irradiation and are bound to 

experience further strong growth rates in PV systems’ implementation 

due to continuing declining costs of the technology. Some of these 

countries are India (2.94 GWp installed by 2014), Thailand (1.30 GWp), 

Chile (0.60 GWp), Mexico (0.18 GWp) and Malaysia (0.16 GWp) (IEA, 

2014c). Chile is experiencing a surge in utility-scale PV installations to 
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serve the mining industry, with a number of large (upwards of 100 MWp) 

power plants installed or in the process of being installed at one of the 

sunniest sites on Earth, on the Atacama Desert. 

Countries which border the tropics have intensified the deployment 

of PV systems in recent years. Pakistan, which launched a 100 MWp solar 

farm in a single location in 2014, will expand the facility to 1 GWp by 

2016 (PV-TECH, 2015). South Africa and Israel had deployed 0.92 and 

0.73 GWp, respectively, by the end of 2014 (IEA, 2014c). 

Table 1: Ten biggest markets for solar PV in the world at the end of 2014, 

adapted from (IEA, 2014c). 

Rank Country Installed 

capacity at the 

end of 2014 

[GWp] 

Percentage of 

solar PV world 

market 

1 Germany 38.2 21.6% 

2 China 28.2 15.9% 

3 Japan 23.3 13.2% 

4 Italy 18.5 10.5% 

5 United States 18.3 10.3% 

6 France 5.7 3.2% 

7 Spain 5.4 3.1% 

8 United Kingdom 5.1 2.9% 

9 Australia 4.1 2.3% 

10 Belgium 3.1 1.8% 

 Rest of World 27.1 15.4% 

 TOTAL 177.0 100.0% 

 

Notwithstanding the delayed growth for photovoltaic markets in 

tropical regions in comparison to other well-established, gigawatt-level 

locations of the world, two countries have shown potential for a rapid PV 

roll-out – Brazil (in South America) and Singapore (in Southeast Asia). 

Brazil is poised to become one of the biggest adopters of the world 

of photovoltaic system deployment in the tropics. The 5th largest country 

in the world, both in area as well as in population (8.5 million km2 and 

~200 million inhabitants respectively), has an infant market in PV. The 

country has relied for more than half a century on power generated from 

hydroelectric plants, with the 14-GW power plant at the Itaipu dam as the 

cornerstone of the electrical generation system.  

For Brazil, which possesses a tropical climate in a considerable 

part of its territory, the PV deployment in absolute numbers is low in 
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comparison to market leaders, yet with a strong growth experienced in the 

past four years (CAGR = ~130%) as reported in (ANTONIOLLI et al., 

2014) and seen in Figure 2. Notwithstanding the low installed capacity of 

today, the targeted number of deployments for the future is promising 

(RÜTHER and ZILLES, 2011). 

 

 

Figure 2: Annually deployed and cumulative volumes of photovoltaic 

systems in Brazil (ANTONIOLLI et al., 2014). 

Most of the existing photovoltaic systems in Brazil until 2011 had 

been off-grid smaller installations in remote areas where the electricity 

grid is not available. An approximate volume of 20 MWp is scattered in 

many areas of the country, connected to batteries in houses in remote 

villages. However, this scenario is fast changing, which is already 

visualized in the country’s continuous energy mix transformation. 

In its report entitled “Balanço Energético Nacional – Ano Base 

2013” (BEN, Brazilian Energy Balance – Year 2013), Empresa de 

Pesquisa Energética (EPE, Brazilian Energy Research Company) 

computed that ~46% of the entire Brazilian energy mix (primary matrix, 

including all energy sources) was met by renewable energy sources, 

which represents a much higher contribution than the world’s average of 

~13%. If taking only electricity production into account, this ratio goes 

up to ~80%, one of the highest in the world (EPE, 2014).  

The overall contribution from renewables in electricity generation 

in Brazil has reduced from previous years though, as the usage of coal in 

thermoelectric power plants has increased, due to extended drought 
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periods in the country. This aspect has generated momentum for solar PV 

deployment. 

Hydropower has provided ~70% of the electricity in Brazil and 

wind power has contributed enough to appear as a player – 6.6 TWh 

(~1.1% of the total electricity production for the country of 570 TWh) 

(EPE, 2014). From 2005 to 2014, wind energy has had a decade run of 

CAGR of nearly 40%, reaching 2.2 GW of installed capacity at the end 

of 2014. 

In order to produce 1 TWh of electricity, Brazil produces 8 times 

less greenhouse gas emissions than the United States, 5 times less than 

Europe and 12 times less than China (EPE, 2014). With such a clean 

energy matrix, it is understandable why the PV market in the country has 

taken longer to gain traction. Nonetheless, Brazil currently experiences a 

late entrance in the solar PV game. On 17 April 2012, the Agência 

Nacional de Energia Elétrica (ANEEL, Brazilian Electricity Regulatory 

Agency) approved a new regulation allowing the connection to the grid 

of PV systems up to 100 kWp (named “micro-generation” in the law) and 

between 100 kWp and 1 MWp (“mini-generation”) (ANEEL, 2012). In 

this net-metering scheme, the extra energy generated on site and fed into 

the grid is kept as a credit and can be used by the producer within a 36-

month period. Alternatively, the credit can be transferred to another 

electricity bill belonging to the same system owner. 

3.9 MWp and 10.7 MWp newly added PV volumes were connected 

to the grid in Brazil in 2013 and 2014, respectively, for a total market size 

of 17 MWp (ANTONIOLLI et al., 2014). With the push for renewables 

taking a worldwide stance, together with falling system prices and the 

newly approved regulation in Brazil, the first MW-level systems started 

to come online. Some of these MW-level were commissioned on top of 

stadiums prior to the 2014 Soccer World Cup, such as a 1.42 MWp 

installation at the Mineirão Stadium in Belo Horizonte, MG (CEMIG, 

2013), see Figure 3, a 400 kWp system at the Maracanã Stadium in Rio 

de Janeiro, RJ, a 400 kWp supporting arena for the World Cup at the 

Pituaçu Stadium in Salvador, BA (AMERICA_DO_SOL, 2012), among 

others.  

Several systems were also installed under R&D grants from 

ANEEL, such as the 3 MWp test facility by the Universidade Federal de 

Santa Catarina (UFSC) and Tractebel in Santa Catarina (see Figure 4). 

Many years of healthy growth rates are expected, especially with 

excellent solar resource throughout the country (1,400-2,400 

kWh/(m2.year) (PEREIRA, E. B. et al., 2006). 
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Figure 3: 1.42 MWp at the Mineirão Stadium in Belo Horizonte, MG 

(CEMIG, 2013). 

 

 

Figure 4: 3 MWp at the UFSC/Tractebel R&D facility in Tubarão, SC 

(Source: Fotovoltaica/UFSC). 

Singapore, located just North of the Equator (1.37° N, 103.75° E), 

although only a small city-state (land area = ~718 km2, population = 5.47 

million as of 2014 (SDS, 2014)), possesses an expanding PV scene taking 

place within a heavily-built environment. Even though it has only a small 

fraction of photovoltaics in its energy mix, this Asian tiger nation is a 

demonstration on how PV is growing in nearby regions around the 
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tropics. At the end of 2008, not even 1 MWp of PV systems were installed. 

However, within the following six years, the volume of installations shot 

up, with a CAGR of ~80%, with total installations currently at 33 MWp 

(see Figure 5). Many locations around the world have reached grid parity, 

the moment in time when investing on a PV system is cheaper than 

purchasing electricity from the grid. This was also the case for tropical 

Singapore in 2012 (CHUA, 2012). 

 

 

Figure 5: Quarterly and cumulatively installed PV capacity in Singapore for 

the 2012-2014 time period (NSR, 2015c). 

In recent times, the Singapore government announced the 

“SolarNova Program”, where several agencies will use their building 

feedstock to host circa 350 MWp of PV systems by 2020 (MTI, 2014). A 

tender call for the program was launched in June 2015, aiming at having 

40 MWp of PV capacity deployed by end of 2017 (CNA, 2015).  

On top of the SolarNova initiative, the Public Utilities Board 

(PUB) – the agency responsible for the water treatment and distribution 

in Singapore – is conducting a 3 MWp floating PV test-bed in an inland 

fresh water reservoir in the country (TODAY, 2014). The potential for 

deployment of hundreds of megawatts of floating systems onto local 

reservoirs has been touted. All in all, Singapore could have ~1-2 GWp of 

cumulative solar PV systems deployed within the 2020-2030 year time 

span (LUTHER and REINDL, 2013).  
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In its year 2000 census (SDS, 2013), Singapore’s population was 

reported at 4.03 million. Ten years later, in its most recent official survey, 

the population had grown to 5.08 million (+26% nominal increase, +2.3% 

CAGR), mostly due to the inflow of foreigners as part of the government 

strategy of economic growth (PMO, 2013). As a consequence of both 

population and economic spurts, energy utilization followed and can be 

visualized in Figure 6, also for a decade, but for a more recent time range, 

in the energy consumption patterns for the country as seen in (for the 

2005-2014 timeframe, recorded CAGR of +2.9%). 

 

 

Figure 6: Annual electricity demand and gross domestic product growth in 

Singapore for the 2005-2014 period, adapted from (EMA, 2013). 

It can be seen that in 2014, the total consumed electricity in 

Singapore was close to 47 TWh. Assuming an installed capacity of solar 

PV in the country of 33 MWp and a PV system annual energy generation 

potential of 1.08 MWh/(kWp per year), as analyzed by the National Solar 

Repository of Singapore (NSR, later discussed in sub-section 2.5.5 (NSR, 

2015d)), electricity production arising from solar PV for the year could 

be estimated at ~35 GWh, or only 0.08% of the total amount of electricity 

consumed in the country in 2014. There is still considerable room for 

growth of the local PV market, which could make a promising case as a 

source of renewable energy for the future (LUTHER and REINDL, 2013). 
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Figure 7 shows that the majority of the electrical energy generation 

capacity in Singapore runs on fossil-fuels (oil for steam units and natural 

gas powering combined-cycle gas turbines, CCGT).  Only a small portion 

can be linked to other sources of generation, in which solar would have a 

small percentage thereof. Due to idled capacities, oil-fired generators 

have been turned off starting in 2012. This has caused the electricity 

matrix of Singapore to become somewhat cleaner, since the CCGT plants 

are less polluting. 

 

 

Figure 7: Electricity generation fuel type in Singapore for the 2009-2015 

period, adapted from (EMA, 2013). 

Another aspect pertaining to the Singapore economy is that the 

majority of fossil-fuels powering energy generation come from imports 

due to the absence of local natural resources. Singapore was the 8th 

highest world importer of oil products in 2012, as per the International 

Energy Agency (IEA) (IEA, 2014a). This is yet another reason why the 

local government has shown the commitment to invest in renewables, 

namely photovoltaics, due to the abundant solar resource in the tropical 

nation (long-term average annual irradiation = 1,631 kWh/m2), in order 

to reduce its dependency on foreign sources of energy (MEWR, 2009). 

In general, the electricity load of the country peaks at close to 6.5 

GW in the months of May and June, when ambient temperatures reach 

the highest values of the year. Figure 8 (left) (EMA, 2015)) shows the 

demand pattern for a May week in the country, when there is a 
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pronounced increase in the usage of air-conditioners (as an example). 

With the entire generation capacity of Singapore resting at ~12.8 GW 

(EMC, 2015), the peak represents only ~55% of the total authorized 

generation capacity, highlighting a robust reserve for the system, mainly 

driven by security issues. Also seen from Figure 8 (right) is the 

progressive increase in the energy demand curve for Singapore through 

the years, a phenomenon which can be partially explained by an increase 

in population as previously mentioned. 

 

 

Figure 8: Daily energy consumption pattern for Singapore during a week in 

May 2015 (left), as well as progression of peak demand for the period of 

2012-2015 (right), adapted from (EMA, 2013). 

The speed of installation of photovoltaic systems for the years 

ahead could represent a rapid change of the energy landscape in 

Singapore, potentially making the island one of the places with the highest 

concentration of PV capacity in a city setting in the world (excluding open 

field solar farms). Figure 9 shows some examples of the urbanization of 

photovoltaics – a skyscraper at the Central Business District of Singapore 

(CBD) with a 75 kWp PV system on its rooftop and a building integrated 

photovoltaic (BIPV) system on a residence at a residential condominium 

in Singapore. BIPV deployment worldwide is also targeted to experience 

strong growth rates ahead (PIKE, 2012), which would continue to 

promote the “urban solar” wave. 
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Figure 9: PV systems in Singapore exemplifying the urbanization of solar 

photovoltaics (NSR, 2015b). 

Table 2 aims at presenting a vision of the future (+15 years) where 

the growth of the population and of PV system deployment for Germany 

and Singapore are contrasted. With an equivalent 2.8 MWp of PV per km2 

of country area, Singapore is poised to have one of the densest fleets of 

PV systems in the world. 

Table 2: Potential growth for photovoltaics and associated country metrics 

in Singapore and Germany, adapted from (EMA, 2014; IEA, 2014b). 

Country Population in   

2014                        

[million 

inhabitants] 

Population in 

20302                        

[million 

inhabitants] 

PV volume 

in 2014              

[in GWp] 

PV volume 

in 20303              

[in GWp] 

Singapore     
(718 km2) 

5.47 7.51 0.33 2.00 

Germany 
(357x103 km2) 

80.72 87.43 38.2 56.7 

Country Watts per capita 

in 2014 

Watts per capita 

in 2030 

kW per 

km2 in 2014 

kW per 

km2 in 2030 

Singapore     
(718 km2) 

~5 ~270 ~45 ~2,800 

Germany 
(357x103 km2) 

~475 ~650 ~110 ~160 

                                                        
2 For Germany, population growth is assumed 0.5% p.a., whereas for Singapore, a country experiencing much 

higher economic growth rates, the population growth assumed is 2.0% p.a., in line with (SDS, 2014). 
3 For Germany, PV growth is assumed to be 2.5% p.a., in line with an already mature and saturated solar 

market. For Singapore, it follows strong expansion rate premises set in (LUTHER and REINDL, 2013). 
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As observed thus far in this overview, the deployment rate of solar 

PV systems worldwide has been considerable, with locations in the 

tropics now gaining momentum. With deeper levels of penetration of 

solar PV intro grids, its professional and smooth integration becomes the 

next challenge. Some high penetration level examples are Italy (~8% of 

the total electricity generation), Germany (~6%) and Greece (~6%) (IEA, 

2014c). For those countries, solar can already account for a considerable 

amount of the peak demand. When higher shares of peak PV are 

concerned, the island of Kauai, in Hawaii already has ~80% contribution 

coming from solar PV (FAIRLEY, 2015). 

Apart from the massive growth rates reported, the up-and-coming 

challenge of solar PV lies on its integration impact onto the grid due to 

high solar power penetration levels, as previously mentioned, and its 

variability, a characteristic of the technology. Varying power output 

originates questions and concerns from the utility standpoint, especially 

in a tropical environment, with high cloudiness indices and erratic cloud 

motion (discussed in detail in section 2.3). Other questions arising on top 

of the variability of the power flow of PV systems itself are associated 

with voltage and frequency fluctuations, reverse and additional power 

flows and anti-islanding (if solar inverters will disconnect from the grid 

in case the latter is unavailable) (BRAUN et al., 2012; STETZ et al., 
2015). For that reason, a new International Energy Agency Task Force 

was created within the Photovoltaic Power Systems Program, Task 14, 

named “High Penetration of PV Systems in Electricity Grids” (IEA, 

2011). Among the goals of Task 14 are to work closely with utilities, 

industry players and stakeholders in developing technologies and 

methods to enable the widespread deployment of distributed, grid-

connected PV systems. 

Large-scale, non-rapid dispatch forms of electrical energy 

generation, namely nuclear, hydro or thermoelectric power plants have a 

longer start-up time. As an example, a 285 MW hydropower Francis 

turbine running with no load (at its “speed no load” setting) would take 

3-min to start producing electricity, upon a decision to generate is made. 

If the turbine is completely stopped, the time between decision and 

generation would be around 10-min. As another example, a 

thermoelectric power plant on total stoppage would take many hours until 

reaching an operational condition where electricity can be generated. 

Even for a situation when there is ready steam for the turbines, a stopped 

unit could take up to 30-min upon generation and synchronism with the 

grid. 
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Gas turbines in Singapore and elsewhere can be part of spinning 

reserve systems, or energy generation potential that could be turned on at 

a relatively shorter period of time. The integration of all these sources of 

energy generation together with solar PV will be one of the technical 

challenges of this century. 

Due to such increasing shares of PV in the generation mix and the 

variability associated with the solar technology, solar irradiance 

forecasting has gained momentum to assist grid operators meeting load 

demand and performing a smooth balancing between conventional 

electricity generation and solar PV and/or other variable renewable 

sources (e.g. wind). Forecasting irradiance for regulation (short-term 

interval horizons, which can act as complement to the grid), as well as for 

grid scheduling and unit commitment (for one-day ahead forecasts or 

times beyond that horizon), are paramount.  

Knowledge of the future output of the sun’s irradiance and 

consequently the energy generation on a PV system under a particular 

irradiance level becomes crucial in bridging a future where renewable and 

non-renewable power sources work concurrently to meet the world’s 

electricity needs. This thesis addresses some of these challenges.  
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1.2 MOTIVATION 

As seen in Table 1, the majority of the installed solar PV capacity 

of the world is located in Europe, United States and Japan, with China 

more recently climbing the ranks all the way to number two. Derived from 

that table, it can be observed from Figure 10 that the top-ten PV markets 

are located outside of the sun-belt region of the world, with the exception 

of a portion of Northern Australia and a small part of China. It can be 

inferred that more than 90% of all PV systems on the planet are not 

located in the tropics, which encompass the most solar-abundant regions 

of the world. 

 

 

Figure 10: Location of the top-ten solar PV markets of the world as of end 

of 2014, adapted from (IEA, 2014c). 

Consequently, it is not unusual that solar PV research efforts have 

been conducted by research centers located in temperate locations of the 

world, with some examples being the National Renewable Energy 

Laboratory (NREL) in the United States, the Fraunhofer Institute for 

Solar Energy Systems (ISE) in Germany, and the National Institute of 
Advanced Industrial Science and Technology (AIST) in Japan, among 

other renowned centers in countries like France and The Netherlands. 

Additionally, the majority of the R&D efforts on the topic of PV system 
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field performance are, in its large capacity, focused on installations at 

countries at the top-ten list of markets in the world. 

It was also reported in section 1.1 the growth of PV systems and 

their role as major contributors to the electricity mix in countries. As 

ratios of solar PV in energy mixes climb from negligible towards 

considerable levels (10% and beyond), work in the area of solar irradiance 

forecasting starts to become increasingly relevant for the management of 

electricity grids. Consequently, solar resource estimation ahead of time is 

vital if desired to be an integral part of the entire energy generation 

operations from a utility stand-point, when regulating energy production 

dispatch of fossil-fuel based power generation. 

Classical weather forecast (in terms of temperatures and 

precipitation) has reached nearly 100% accuracy for one day ahead and 

70% of accuracy for five days anticipation in many parts of the world. For 

PV applications, where the sunlight intensity, or solar irradiance, is the 

object of interest, accuracies depend on time horizons of choice (from 

minutes up to a couple of days ahead) and region of the world (a temperate 

weather region is likely to have less cloud coverage in comparison to a 

tropical region). The forecast time horizons will dictate forecasting 

products, tailored for stakeholders (such as utilities) for their dispatch and 

commitment cycles of fossil-fuel and other sources of energy generation. 

This thesis focuses on solar irradiance forecasting for a tropical climate 

in Singapore and a critical time frame from the local utility’s perspective 

– short-term intervals (from a few minutes up to 1-hr ahead of time), 

especially since electricity is traded in Singapore at 30-min intervals 

(EMA, 2013).  

An added motivation for the case study in Singapore is the 

relatively small size of the island-state, with its ~720 km2 of area and only 

a small interconnection to the Malaysian power grid. The variability 

which can arise from PV systems due to the weather poses a much larger 

risk since the geographical smoothing effect is reduced. Drastic weather 

variations in Singapore (e.g. due to fast approaching storms common in 

the tropics, see example in Figure 11) make short-term solar irradiance 

forecasting a crucial part of PV grid integration and to properly manage 

and balance the grid.  

Research on solar irradiance forecasting for PV applications is 

considerably new (less than 10 years of publications as described later in 

section 2.4), and when tropical regions are the object of study, the work 

is altogether novel. 
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Figure 11: A so-called “Sumatra squall” with an approaching storm 

originating from Indonesia as captured by Doppler radar images in 10-min 

intervals, adapted from (NEA, 2012).  

Solar irradiance forecasting is just the first mechanism in 

improving grid operations with a large share of renewables. The process 

of creating a resilient grid relies on further understanding of the 

conversion steps from irradiance all the way into final electricity for end 

users. To make matters more difficult, the area of PV systems 

performance modeling and assessment is still in its infancy for tropical 

regions, as it would be expected from the absence of relevant volumes of 

installations in these locations.  

As an example, and mentioned in section 1.1, having solar PV 

systems in a densely-built environment, be it Singapore or other 

metropolises in the future, will create integration hurdles for the 

technology into existing building feedstock. The influence of shading 

from nearby buildings and structures exemplifies such integration 

challenges, but which can be mitigated (ZOMER et al., 2014). 

In this thesis, methods for short-term irradiance forecasting are 

executed for ground-measured solar irradiance data in Singapore and 

benchmarked. Also as part of the work, an attempt to develop a novel 

method to reduce prediction errors is developed. The discovery of areas 

of improvement helps delineate a path for similar work which could be 

experienced by other researchers in areas with similar weather patterns 

around the globe. Studying these extreme weather conditions as the one 

shown in Figure 11 and their effect on a growing number of solar 
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photovoltaic systems are topics of great interest to local power system 

operators.   

The work of this doctoral thesis will therefore focus on pressing 

topics such as assessment of the solar energy resource ahead of time, but 

at the same time taking into account the amount of solar electricity 

generated at the end producer, after a PV system goes through its known 

loss mechanisms process. Therefore, the motivation and relevance behind 

this thesis stem from two fronts and can be summarized as follows: 

 

 The increasing share of photovoltaics in electricity grids around 

the world has been overwhelming. PV will play a major role in 

future energy mixes. Forecasting of the solar resource will be key 

in coordinating dispatch and management of the existing power 

generation resources based primarily on fossil-fuels; 

 

 The massive amounts of PV systems being deployed around the 

world and the need to understand their day-to-day and long-term 

behavior and optimization aspects. The output of systems, with 

the understanding of the entire flow mechanism from point A 

(“irradiance availability”) all the way to point B (“kWh 

delivered”), is and will be crucial. 

 

Work on irradiance forecasting is pioneer in the climatic region of 

the world proposed here. Additionally, PV systems modeling, simulation 

and validation has also not been investigated extensively in sun-belt 

countries. 

Finally, as the world moves increasingly towards the so-called 

“smart grids”, mechanisms such as trading of energy, variable tariffs and 

real-time controlled production & demand of electricity become “hot 

topics”. Thus, subjects such as the predictability of renewable energy 

solar assets are more and more relevant moving forward with the aim of 

forecasting, for example, PV system output ahead of time. 
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1.3 OBJECTIVES 

1.3.1 Main Objectives 

The main objectives of this thesis are to: 

 

a) Evaluate and compare short-term forecast methods for 

solar irradiance in Singapore, taking into consideration the 

challenging meteorological conditions found in tropical 

regions, minimizing loss of precision from the forecasts; 

and 

 

b) As a final use of the forecast products originated in a), 

simulate, determine and validate generated solar PV 

systems’ energy output ahead of time. 

1.3.2 Specific Objectives 

The specific objectives of this thesis are to: 

 

 Simulate and validate irradiances at given points of the 

Singapore island; 

 

 Compare and contrast available irradiance forecast 

methods, be it via stochastic, artificial intelligence (e.g. 

artificial neural networks), or other novel methods; 

 
 Simulate PV system performance based on given solar 

irradiance forecasts and loss mechanism parameters of PV 

systems modeling;  

 

 Validate results using an existing network of PV systems 

under monitoring in Singapore; 

 

 Investigate other aspects influencing PV system 

performance, such as transboundary haze episodes; 

 

 Make proposals & assumptions of forecasting & PV 

system behavior for utility stakeholders in Singapore. 
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1.4 STRUCTURE OF THE THESIS 

The thesis is structured such that chapter 1 presented an overview 

of the status quo of solar photovoltaics around the world and most notably 

in the tropics. Also within the chapter, the motivation behind this work 

was given, followed by the main and specific objectives of the thesis. 

Chapter 2 provides a detailed literature review surrounding topics 

such as the modern state of PV systems technology, solar irradiance 

resource basics, the typical climate found in the tropics (and specifically 

for the case study of Singapore), the state-of-the-art of solar irradiance 

forecasting and finally PV system simulation & performance assessment 

considerations. 

Chapter 3 touches on the methods proposed for the works 

contained in this thesis. It introduces how data was collected and how it 

was used in order to obtain the results presented in chapter 4, as well as 

discussions arising from the findings. 

Chapter 5 summarizes the outcome of this work together with 

likely limitations encountered which in turn fuel suggestions for future 

works in the field.  

Chapter 6 presents the publications derived from this thesis and 

other works by the author. 
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2. LITERATURE REVIEW 

 

2.1 SOLAR PHOTOVOLTAICS 

2.1.1 Solar PV systems technology 

Photovoltaics (or commonly known as PV) is the static and direct 

conversion of sunlight into electricity (DGS, 2008). A classic PV system 

is made primarily of a combination of photovoltaic modules (Figure 12 

left, mounted onto a residence’s rooftop as an example (NSR, 2013c)) 

connected in series forming strings. These strings are then hooked up in 

parallel to solar inverters (Figure 12 right), which convert the produced 

DC (direct current) power from the modules into AC (alternate current) 

power, then fed into the grid of the building. 

 

 

Figure 12: A residential 8.6 kWp PV system in Singapore with thin-film 

modules and two inverters (NSR, 2013c). 

Smaller PV installations such as the 8.6 kWp thin-film system 

shown in Figure 12 are usually connected to low-voltage, single-phase 

grids (230 VAC, 50 Hz for the case of Singapore). Bigger systems, such as 

the 300.4 kWp polycrystalline setup at the Renewable Energy Corporation 

(REC) solar wafer, cell and module plant in Singapore (Figure 13, (NSR, 

2013c)), might be connected to the medium-voltage grid of the facilities 

in which they are hosted. 

Similar systems are flourishing in other tropical locations of the 
world, such as Brazil, as it could be seen in Figure 3 for the case of a 

medium-voltage connected system and Figure 14 for the first residential 

PV system connected to the electricity grid in the state of Minas Gerais, 

located in the city of Belo Horizonte, a 3.6 kWp monocrystalline setup 

(SPB, 2012). 
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Figure 13: An industrial 300.4 kWp PV system at the REC facility in Tuas, 

Singapore with polycrystalline modules (NSR, 2013c). 

 

 

Figure 14: A 3.6 kWp monocrystalline PV system in a residence in Belo 

Horizonte, Brazil (SPB, 2012). 

Crystalline silicon wafer-based technologies have lead most of the 
development of solar photovoltaics. Its presence can be linked to 80-90% 

of the PV systems found in the world (SOLARBUZZ, 2013b). Thin-film 

amorphous silicon and other variants like microcrystalline, had a spurt of 

growth around the year 2005, increasing their market share from 10% to 

close to 20%. That was especially the case since a raw material bottleneck 
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occurred (2006-2008), favoring the rise of thin-film systems, which 

utilize less silicon for their production. However, due to ongoing 

consolidation in the PV manufacturing sector and continuous preference 

towards crystalline-based technology systems, thin-film products have 

been further diluted back to ~10% and below of the total market volume. 

Monocrystalline silicon cell efficiency record is achieved with the 

deposition of a heterojunction intrinsic layer (“HIT cells” as trademarked 

by Sanyo, later acquired by Panasonic). The most recent record as of 2015 

stands at 25.6%. For multicrystalline silicon, the record efficiency is 

20.8% (GREEN et al., 2015). In terms of other PV technologies, cadmium 

telluride (CdTe) modules and systems have been heavily deployed by 

American company First Solar. During tough economic market 

conditions (2011-2013), the company performed well and deployed MW-

size solar parks primarily in the United States (see the 550 MWac solar 

farm in Figure 15 (FIRST_SOLAR, 2013)). First Solar announced in 

2015 a breakthrough record efficiency of 21.5% for its CdTe cells 

(PV_MAGAZINE, 2015). 

 

 

Figure 15: Desert Sunlight Solar Farm (550 MWac PV plant), built in 

California (FIRST_SOLAR, 2013). 

Apart from efficiency improvements in solar cell technologies, a 

current trend in crystalline wafer-based modules is the launch of bifacial 

products, glass-glass laminates which allow light to go through the panel, 

which then bounces off the ground/roof underneath, returning partially to 

the panel, boosting its power output. 

Another recent frontier in photovoltaic system deployment has 

been the launch of “floating PV systems”. These systems have been aimed 
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at minimizing land resource utilization, especially for area-stricken 

countries such as Japan or Singapore (NCCS, 2011). Other mentioned 

benefits of floating PV are the extra cooling provided by the water to the 

panels, thus allowing for a higher energy harvesting, as well as ability of 

the system to prevent algae growth (TRAPANI and REDÓN SANTAFÉ, 

2015). Figure 16 shows two MW-level floating PV systems deployed in 

Japan in fresh water canals and reservoirs (NIKKEI, 2013; 

TECHXPLORE, 2015). 

 

 

Figure 16: 1.2 MWp floating PV system at the Okegawa (left) and 1.7 MWp 

Hyogo (right) prefectures in Japan (NIKKEI, 2013; TECHXPLORE, 2015). 

In terms of how different PV technologies react to the sun’s 

electromagnetic irradiation, Figure 17 shows the relative spectral 

responses of different PV modules (multicrystalline Si (silicon), 

amorphous Si, CdTe and CIGS). The single-junction a-Si module has a 

peak response at around 600 nm and is able to convert light into electricity 

from ~320-800 nm. For the CdTe module technology, the corresponding 

range is 300-900 nm. The spectral response range for the CIGS module is 

around 350-1150 nm, similar to that of a crystalline silicon wafer-based 

module (LIU et al., 2014b). 

Modules are the driving force of the system, with the remaining 

“balance of systems” (commonly abbreviated as BOS) composed by 

inverters, mounting systems (for the interface between modules and 

ground/rooftop/floats), DC and AC cabling & switches/isolators, surge 

protections, etc. Modules have historically represented the majority of the 

cost of a PV system (in the order of 70% of the total cost), but this ratio 

has drastically changed, falling to around 50% in 2015 (see section 2.1.2).  

 



 

61 

 

Figure 17: Relative spectral response of various PV technologies 

(multicrystalline Si, amorphous Si, CdTe and CIGS), measured under STC 

temperature (25°C), with the AM1.5G spectrum (grey) also shown as 

reference (LIU et al., 2014b). 

As much as solar PV can and have caused enthusiasm in governments 

and population for a faster rollout, a few aspects historically prevent even 

faster growth rates. They can be named as follows: 

 

 Cost-competitiveness of photovoltaics (discussed in 2.1.2); 

 

 Grid integration challenges (discussed in 2.1.3); 

 

 Variability aspect of the energy generation profile from PV 

(discussed in 2.1.4); 

Apart from the various challenges discussed next, solar PV has a 

bright future, as covered in subsection 2.1.5 with a market outlook.  
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2.1.2 Cost-competitiveness of photovoltaics 

PV module prices, which have historically dictated the overall cost 

of a system, have reduced drastically (~60%) during the 2009-2013 

period (SOLARBUZZ, 2013a), and were responsible for about only half 

of a PV system cost in 2014 (BSW, 2014). Consolidation happened in the 

module manufacturing industry, with several companies closing doors or 

acquired by other players. Big name companies such as Bosch exited the 

solar market altogether after major losses reported (PV-TECH, 2013). 

Traditionally, even well-established companies experienced turbulence in 

the PV business, with recent episodes such as former world number one 

Suntech (China) being acquired, and also other Chinese players in 

Hanergy and Yingli going through unstable periods (BLOOMBERG, 

2015; WALL_STREET_JOURNAL, 2015). The price learning curve of 

photovoltaics (Figure 18) shows that with each doubling of the installed 

PV capacity worldwide, prices have come down by ~20% for the 34-year 

period (ISE, 2014). 

 

 

Figure 18: Price learning curve of photovoltaics (ISE, 2014). 

As previously mentioned, the price of a PV system relied heavily 

on the solar module as the main component (circa 60-70% of the total 

investment). With the price erosion of the past years, the scenario has 
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reversed and BOS components now account to ~50% of the cost of a 

rooftop PV system in Germany (see Figure 19) (BSW, 2014), thus 

shifting some of the pressure to inverter makers and system integrators in 

general to become more competitive. For a solar farm in the MW range, 

the ratio could be even lower due to the likely economies of scale 

achieved when procuring solar panels in bulk volumes, and also to the 

fact that rooftop PV systems do not account for area-related costs, which 

is not the case for utility-scale, ground-mounted PV generators. 

 

 

Figure 19: Evolution of average price for PV rooftop systems in Germany, 

including percentage of module cost in final system price (BSW, 2014). 

Grid parity has been reached in many locations throughout the 

world, such as sunnier parts of the United States (California, Arizona, 

etc.), Italy and Australia, but also locations with high grid retail prices, 

such as Germany, Japan, Brazil, among others. A schematic of this 

phenomenon can be seen in Figure 20, where a combination of rising grid 

electricity prices (orange band, mostly pegged to oil prices) and declining 

costs of PV (green band, achieved for example with mass scale production 

and innovation), eventually leverages PV to a competitive state against 
other forms of electricity generation (LUTHER, 2009). 

In late 2012, it was announced that Singapore had reached grid-

parity (STRAITS_TIMES, 2012) for bigger-size PV systems (> 500 kWp) 

versus grid retail electricity prices (of ~0.22 USD/kWh then). In 2015, 

even with declining worldwide oil prices causing grid tariffs to come 



 

 

64 

down to nearly 0.15 USD/kWh, grid parity is still present across all PV 

project sizes (BIERI et al., 2015).  

 

 

Figure 20: Grid parity drivers (LUTHER, 2009). 

In Brazil, depending on the local tariff and solar resource 

irradiation resource availability, grid parity has also been present since 

2012 (MONTENEGRO, 2013). 

In order to understand corresponding costs of the PV technology 

in a net present value setting, equivalent to what a user would pay for 

electricity tariff today and thus allowing for a more straight-forward 

comparison with grid electricity prices, the levelized cost of electricity 

(LCOE) is introduced (Equation 1): 

 

LCOE = 
Total life cycle cost

Total lifetime energy production
 (1) 

 

The formula can be further expanded (Equation 2) where the total 

life cost of the system is further developed into initial investment added 

to annual costs incurred (e.g. cleaning costs, if chosen), minus a 
depreciation value and a final residual value at the end of the lifetime of 

the system. This value is divided by the estimated yield of the system, 

deducted from an annual system degradation rate. 
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=
𝐈𝐧𝐢𝐭𝐢𝐚𝐥 𝐢𝐧𝐯𝐞𝐬𝐭𝐦𝐞𝐧𝐭−∑

𝐃𝐞𝐩𝐫𝐞𝐜𝐢𝐚𝐭𝐢𝐨𝐧𝐧
(𝟏+𝐝𝐢𝐬𝐜𝐨𝐮𝐧𝐭 𝐫𝐚𝐭𝐞)𝐧

𝐍
𝐧=𝟏 +∑

(𝐀𝐧𝐧𝐮𝐚𝐥 𝐜𝐨𝐬𝐭)𝐧
(𝟏+𝐝𝐢𝐬𝐜𝐨𝐮𝐧𝐭 𝐫𝐚𝐭𝐞)𝐧−

𝐑𝐞𝐬𝐢𝐝𝐮𝐚𝐥 𝐯𝐚𝐥𝐮𝐞

(𝟏+𝐝𝐢𝐬𝐜𝐨𝐮𝐧𝐭 𝐫𝐚𝐭𝐞)𝐍
𝐍
𝐧=𝟏  

∑
𝐈𝐧𝐢𝐭𝐢𝐚𝐥 𝐲𝐢𝐞𝐥𝐝∗(𝟏−𝐒𝐲𝐬𝐭𝐞𝐦 𝐝𝐞𝐠𝐫𝐚𝐝𝐚𝐭𝐢𝐨𝐧 𝐫𝐚𝐭𝐞)𝐧

(𝟏+𝐝𝐢𝐬𝐜𝐨𝐮𝐧𝐭 𝐫𝐚𝐭𝐞)𝐧
𝐍
𝐧=𝟏

 (2) 

 

A list of countries experiencing grid parity and the gap between 

solar PV LCOE and electricity prices can be seen in Figure 21 

(REUTER0053, 2015). As an example of this grid parity gauging as of 

2015, a LCOE for a solar PV system in Brazil would be estimated at ~18 

USD cents per kWh, whereas the grid electricity would be practically 

double of that, at ~36 USD cents per kWh. 

 

 

Figure 21: Key countries around the world experiencing grid parity 

(REUTERS, 2015). 
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2.1.3 Grid integration challenges  

As PV markets mature, such as the case of countries like Germany 

or Italy, deployment rates tend to stabilize (Germany ~8% CAGR 

between 2012 and 2014, Italy ~6%, values that are much lower than 

worldwide growth rates, ~33% for the same period). Nonetheless, the 

steady deployment of systems, coupled with the adoption of energy 

efficiency practices, means more demand is met by photovoltaics, which 

become embedded and permanently relevant in a country’s energy 

generation mix (at ~7% demand contribution levels for Germany, Italy 

and Greece (SPE, 2015)).  

As an example of photovoltaics as a massive contributor to a 

country’s grid on a day-to-day basis, inverter manufacturer SMA uses 

data output from PV systems in Germany under their portfolio to 

extrapolate power AC output data for the remainder capacity of the 

country in order to plot energy production graphs such as the ones shown 

in Figure 22 (SMA, 2015a). The total peak output power for a very sunny 

day in 2012 (25th May, shown on the top left of the figure), assuming a 

PV installed capacity in the country at that date of circa 27 GWp, was 21.1 

GW. With Germany having peak power usage at circa 80 GW, that was 

translated into solar PV covering more than 1/4 of the needs of the entire 

country at that particular instant in time. In a check on the same website 

at near summer times of the years 2013, 2014 and 2015, the following 

peaks were obtained: 24.2, 25.9 and 27.6 GW, respectively. Between the 

first year shown in the figure (2012) and the fourth (2015), the peak has 

jumped 6.5 GW, or a CAGR of 7%, in line with verified photovoltaic 

market growth rates.  

As much as Figure 22 showed peak days throughout Germany, 

which help with peak shaving but which, at certain occasions, forces 

power to be exported to nearby countries, Figure 23 highlights another 

concern of utilities everywhere – days with varying power output among 

regions (left of the figure, with the example showing higher irradiance 

values in the South part of the country and cloudy conditions in the 

North); and days with very low production due to bad weather throughout 

(right of figure). In the example shown, the peak for the entire country on 

Christmas 2014 was registered to be only 4.2 GW, circa 15% of the high 

irradiance levels shown in Figure 22. 
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Figure 22: Progressive solar PV production peaks in Germany from sunny 

day examples from 2012 to 2015, adapted from (SMA, 2015a). 

 

 

Figure 23: Variable and low irradiation day examples in Germany in 2015, 

adapted from (SMA, 2015a). 

 



 

 

68 

Installation rates in Europe are stabilizing at ~5% growth levels per 

annum. The moment in time when PV contributes considerably, even for 

a short-period of time to the entire electrical system, is already upon 

utility grids. To somewhat add to the concern level normally associated 

with PV, most of the National Renewable Action Plans (NREAPs) ended 

up far exceeding the expected targets for PV deployment set for the year 

2020, which have already been met in the majority of European countries 

(IEA, 2011). 

Other technical concerns arise from the presence of PV. A classic 

example is anti-islanding, which is the ability of a PV inverter to 

disconnect from the grid in case the latter is absent. Inverters will usually 

disconnect from the grid if voltage is not detected after 0.2 milliseconds 

(SMA, 2013b). From Figure 24, other key inverter post-manufacturing 

quality checks, tailored to provide resilience to these devices and the grid, 

can be seen. 

 

 

Figure 24: Inverter quality assurance report, highlighting some of the tests 

which individual units go through (SMA, 2013b). 

As the topic of grid integration for huge levels of PV was 
identified, the IEA Photovoltaic Power System Program (PVPS) then 

created Task 14 with the goal of studying high penetration of PV systems 

in electricity grids. The Austrian Institute of Technology (AIT) is the 

operating agent of the task and identified challenges in the power system 
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and regional distribution levels for PV integration, as shown in Table 3 

(AIT, 2012). 

Table 3: Challenges and solutions to large-scale PV systems integration 

(AIT, 2012) 

Power System Level Regional Distribution Level 

Managing variability of supply with 

PV 

Managing voltage profiles 

Ensuring security of supply Avoiding overloading components 

Matching supply and demand Transforming passive distribution into 

active grids 

Ensuring frequency stability Integrating PV into smart grids 

 

Germany’s grid has progressively experienced higher levels of 

solar PV deployment as the years progressed. Figure 25 further depicts 

this phenomenon with the reverse power flow observed at a 110/22 kV 

substation in the service area of Bayernwerk AG, in Southern Germany. 

It can be detected that with the passing of time, the levels of AC power 

being fed into the grid increased summer by summer (STETZ et al., 
2014).  

 

 

Figure 25: Power flow measured at 110/22 kV substation in Bavaria, South 

Germany, between 2009 and 2013 (STETZ et al., 2014). 
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As ratios of solar PV increase in electricity mixes, new standards 

arise, as well as a deeper understanding of the challenges (BRAUN et al., 

2012). As an example of a future dominated by renewable energy 

generation, on a sunny, windy and cool spring weekend day in Germany, 

solar PV and wind power together are able to meet more than 50% of the 

noon peak loads. In those situations, base-load power plants need to be 

ramped down in order to guarantee power system stability (STETZ et al., 

2015). 

Although perceived as a negative contributor to the grid in terms 

of keeping its stability, ongoing research efforts highlight that 

photovoltaics actually have shown to have a positive contribution to grid 

feeders (RÜTHER et al., 2008).  

2.1.4 Variability aspect of the PV technology 

A further, and perhaps more intuitive challenge to photovoltaics 

integration, is the inconstant characteristic of the solar PV output. Short-

term variability (caused by cloud motion) is the most notable contributor 

(see Figure 26 as an example of intra-day irradiance variability in 

Singapore).  

 

 

Figure 26: Measured clear sky irradiance day in Singapore (in red) and a 

day with broken cloud conditions (in blue) (SERIS, 2011). 

Seasonal variability can be relatively well predicted, especially 

with the usage of typical meteorological year (TMY) irradiation sources, 
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which usually carry a ±10% maximum year-on-year variability, based on 

a minimum number of years of records of ten, but preferably thirty years 

(WILCOX and MARION, 2008). TMYs, however, do not address short-

term variability (intra-day or a few days ahead). 

In a relatively large area country like Germany, the variability of 

the solar irradiation distribution is smoothened with distance via the so 

called geographical smoothing. Additionally, even in case of peak 

variations such as the condition illustrated in Figure 23, export of peak 

electricity to nearby countries, e.g. Czech Republic for the case of the 

state of Bavaria in Southern Germany, guarantee system stability.  

Hoff and Perez introduced the topic of the smoothing effect PV 

power output has over geographical distance (HOFF and PEREZ, 2010). 

Lave et al. fine-tuned such methods by using spatial-temporal correlations 

and tested their method at both a distributed fleet of residential PV 

systems in Japan as well as at a utility-scale PV plant in Nevada, USA 

(LAVE et al., 2013). 

Taking the case of Singapore as an opposite example, one would 

face a much more challenging environment for operations. Firstly, 

geographical smoothing is limited due to the small country area (roughly 

40x20 km of dimensions). Occurrences of low or nearly zero irradiance 

levels in one area of the island, with high levels in the other, are possible 

(see Figure 27). 

 

 

Figure 27: Irradiance variability in Singapore with examples of a) an instant 

with half of the island covered by rain (left) and b) high peaks of irradiance 

and cloudy conditions (source: SERIS). 

   



 

 

72 

2.1.5 PV market development and future outlook 

As it was discussed in section 1.1, the development of solar PV 

during the past one and a half decades has been tremendous, with ~178 

GWp (SPE, 2015) of systems deployed to-date from almost negligible 

levels at the turn of the century. 

Although markets in Europe will not be as robust as they used to 

be in recent years, the vigorous demand in new solar frontiers around the 

world is likely enough to sustain the overall global growth figures. 

Moving forward, major regions for PV development will be located 

primarily in Asia, with a key role expected to be played by China, Japan 

(see Japanese town with high penetration of PV in Figure 28) and India, 

all targeted to be top-five leaders in annual deployments. The United 

States and Brazil, two continental-area countries, are also poised to 

advance MW scale solar PV deployments in the near to medium future. 

 

 

Figure 28: Japanese town with high penetration of residential solar PV 

systems (UEDA, 2010). 

SolarPower Europe predicts that by 2019, the annual size of the 

world solar PV market could be anywhere between nearly 400 and 540 

GWp, see Figure 29 (SPE, 2015).  

All in all, the steady growth of mature markets and the explosive 

doubling and tripling of capacities at new developing ones put solar 
photovoltaics in a position to become the renewable energy source of 

choice for the future of humanity. The IEA reports that PV could 

contribute 16% of the entire global electricity needs by 2050 (IEA, 

2014b). 
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Figure 29: Future scenarios for the total volume of PV systems deployed 

worldwide up to 2019 (SPE, 2015). 

Looking beyond, in its report on world future energy scenarios, 

Shell proposed two distinct visions leading to the year 2100 – one focused 

on the maintenance of the status quo, with increased expenditure on 

technology for exploration of existing and new sources of fossil-fuels; the 

other, a future where a greater focus on renewable energy deployment is 

at play. In the second vision, it is expected that solar PV will power more 

than one third of the entire humanity’s energy needs by 2100 (SHELL, 

2013). 
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2.2 SOLAR IRRADIANCE AT THE EARTH’S SURFACE 

2.2.1 Overview on solar irradiance 

The solar energy resource availability at the Earth’s surface has a 

wide range of applications ranging from meteorology, as the most classic 

example, to engineering, agriculture, medical fields and other areas of 

sciences (BADESCU, 2008). For the purpose of photovoltaic 

applications, it has had a major role in a region’s solar potential 

assessment in order to estimate yield reports on the generation capabilities 

of a PV system, likewise for other solar-based technologies (such as 

concentrated solar photovoltaics, concentrated solar power and solar 

thermal). However, moving forward, a secondary aspect of solar 

irradiance starts to take the forefront of investigations – the forecasting of 

the solar resource ahead of time for a given location where renewable 

energy technologies, which are dependent on solar power, are located. 

Acquiring solar irradiance data has been challenging for research 

groups around the world. In the United States, the ratio of stations 

collecting temperature data to those collecting irradiance measurements 

is 100:1. That number becomes even more staggering if the entire world 

is taken into account – 500:1 (BADESCU, 2008). For Singapore, as 

another example, two known irradiance stations are part of the long-term 

data acquisition network – Changi Airport and Paya Lebar Airbase (see 

both circled in red in Figure 30). In contrast, the National Environment 

Agency of Singapore (NEA) has officially 63 meteorological stations in 

its network (with ambient temperature collection stations, seen as a 

background map in Figure 30, (NEA, 2013a)), thus the discussed ratio of 

ambient temperature stations to irradiance stations would be ~30:1 for the 

country. 

The solar irradiation reaching the top of the atmosphere, referred 

to as “solar constant”, has an approximate value of 1,366.1 W/m2 

(GUEYMARD, 2004). However, this is an old and outdated figure and 

has been since then corrected to 1,361 W/m2 based on the Solar Radiation 

and Climate Experiment (SORCE) satellite (ROTTMAN, 2005). This 

total accounts for the integration on all possible wavelengths of the 

spectrum and is also associated with an air mass value of zero (“AM0”). 

Air mass 1 (“AM1”) takes place at zenith, when the sun is at the 
highest position in the sky for a given location, thus the shortest 

atmosphere length between the Earth’s surface and space. At that 

position, and taking atmosphere losses into account, such as absorption 

and refraction by molecules in the air, Rayleigh scattering, aerosol 
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presence, bring the irradiance value on the surface of the planet to about 

1,000 W/m2. 

 

 

Figure 30: 63 weather stations in Singapore, with the two only government 

irradiance measuring stations marked in red, adapted from (NEA, 2013a). 

The main components of the solar irradiation can be divided into 

global horizontal irradiation (GHI), diffuse horizontal irradiation (DHI) 

and direct normal irradiation (DNI) as the principal parameters. Figure 31 

illustrates the components and decompositions of the irradiation 

(BADESCU, 2008). 

The direct component of the irradiance (DNI, also known as the 

solar beam), forms an angle between a flat surface and the solar zenith 

angle (z), complementing this angle would be the solar elevation (h). The 

relationship between the components of the solar irradiance on the surface 

of the Earth can be described as per Equation 3. 

 

GHI = DNI ∙ cos(z) + DHI = DNI ∙ sin(h) + DHI   (3) 

 

For the situation of a tilted surface, typical for PV systems, 

Equation 3 can be further rewritten into: 

 

GHI = DNI ∙ cos(θ) + Rd ∙ DHI + R     (4) 

 

where θ is the incidence angle to the normal of a tilted surface, Rd is a 

reduction of the sky view factor and anisotropic scattering, and R is the 

radiation reflected from the ground into the tilted surface, also visualized 



 

 

76 

in Figure 31 (BADESCU, 2008). This factor would be dependent on the 

albedo of the surface. 

 

 

Figure 31: Solar irradiation components (BADESCU, 2008). 

For solar irradiance modeling in PV applications, only the three 

components GHI, DNI and DHI are normally used. Section 2.2.3 

addresses these parameters. 

Figure 32 is a representation of the sun path diagrams for three 

locations of the world – Singapore (~1°N, left), Florianópolis, Brazil 

(~27°S, middle) and Freiburg, Germany (~48°N, right), which describe 

the sun’s path on the sky for a given year (GAISMA, 2013).  These 

locations were chosen here to illustrate such polar charts for a 

combination of case studies, namely an Equatorial location, one in the 

Southern hemisphere, and one in the Northern hemisphere, respectively. 

At the same time, the varying absolute value for the latitude (from 

latitudes nearly zero, to 48, through 27 degrees), allows for visualization 

of the variation path of the sun in the sky at three considerably different 
locations of the world. 
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Figure 32: Sun path diagrams for the cities of Singapore, Florianópolis and 

Freiburg (from left to right), adapted from (GAISMA, 2013).  

The green path in Figure 32 is equivalent to the position of the sun 

in the sky on June 20/21 (summer solstice for a location in the Northern 

hemisphere such as Germany and Singapore, winter solstice for a location 

in the Southern hemisphere, such as shown for Florianópolis). 

Conversely, the blue path represents the solstice for the opposite yearly 

situation (i.e. on December 21/22). The gray paths are the equinoxes in 

March and September, where the sun-hours within a day have the same 

duration. Finally, the orange line represents the sun path on the day of the 

access to the website, in this case 14th April (GAISMA, 2013). 

The sun path for a location closer to the Equator is relatively equal 

in terms of the sun’s “traveling path” in the Northern or Southern portions 

of the sky, thus the duration of daylight is similar in length and longer 

than at locations away from the Equator. This guarantees, in general, 

higher irradiation records for locations in the tropics. 

Having the sun directly overhead cannot be achieved on a location 

outside of the region between the two tropics (~23°N/S), also possible to 

be visualized in Figure 32 for both Florianópolis (~27°S, middle) and 

Freiburg (~48°N, right), as seen by the yellow sun path range not 

overlaying the central circle representing a standing person/PV system on 

the polar chart. 

For solar resource maximization, it is common to tilt a PV system 

to the latitude of a location and towards the opposite hemisphere where 

the system is installed (DGS, 2008). This is the primary reason for 

modules being tilted (discussed in section 2.2.3). Secondarily, it is also 

important to tilt modules to guarantee the so called “self-cleaning effect” 

from the rain onto the front glass surface of the modules to prevent soiling 

accumulation (covered in section 2.5.2).  
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2.2.2 Measuring solar irradiance 

For measurements of the sun’s irradiation, three types of detectors 

are used: (1) thermopile, (2) black-body cavity and (3) solid-state 

(semiconductor) sensors (BADESCU, 2008). These devices work via 

different physical principles from one another and thus register different 

values at different accuracies. 

Thermopiles are devices that convert thermal energy to electrical 

energy, with the generation of a voltage output based on the heat flux 

from the solar irradiance (for the case of pyranometers). Thermopile-

based detectors cover the whole shortwave spectrum, however limited to 

290-2,800 nm (used in most pyranometers) (BADESCU, 2008).  

Solid-state (semiconductor) sensors react to a certain irradiance 

value by generating a current, which is proportional to the radiation flux. 

As they are typically made of silicon, which has a narrower spectral 

response (300-1,200 nm) (KING et al., 2004), these devices do not pick 

up the broad range of the sun’s irradiation as a thermopile does, making 

them less accurate measuring devices. 

Figure 33 shows three types of irradiance devices installed at the 

SERIS meteorological station, all measuring the global horizontal 

irradiance – a class II research-grade pyranometer (thermopile, CMP11 

from company Kipp & Zonen, far left), a second type of pyranometer 

(also a thermopile, SPN1 from Delta-T, next to it, which also measures 

diffuse horizontal irradiance within the same device via a shading mask) 

and a silicon sensor (semiconductor, here from maker Mencke & 

Tegtmeyer). The comparison output for GHI readings highlights the 

spectral response effects, especially when benchmarking the silicon 

sensor, which has a narrower spectral response against the other sensors.  

 

 

Figure 33: Three irradiance devices measuring global horizontal irradiance 

located at the SERIS meteorological station in Singapore (source: SERIS). 
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Figure 34 shows the GHI readings for all the previously mentioned 

sensors under a clear sky condition in Singapore in 1-min time steps. The 

silicon sensor, which is further calibrated at the Fraunhofer Institute for 

Solar Energy Systems (ISE), measured 3.9% less irradiation than the 

CMP11 pyranometer for that day. The SPN1 readings highlight variations 

in accuracy even between such devices working under the same physical 

principle. 

These readings highlight the different spectral response of these 

devices, also a further conclusion from Figure 17 whereby various PV 

technologies would behave differently accordingly to the spectrum 

signature of the solar irradiation at a particular location. 

 

 

Figure 34: GHI and DHI readings on a clear sky day in Singapore measured 

by several irradiance devices (source: SERIS). 

Additionally, it can be seen that the DHI component for the given 

date accounts for 20% of the GHI total, a situation which is rare for a 

tropical location such as Singapore, later discussed in more detail under 

section 2.3.2. 
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2.2.3 Irradiance models for PV applications 

Models to predict the irradiance on a tilted plane are important in 

helping with the assessment of the performance of PV systems (see 2.5.1). 

Some of these models perform more accurately than others. Perez, Liu & 

Jordan and Klucher are a few of the leading models in this field. 

In the past, many authors presented their models to predict solar 

radiation on inclined surfaces from the measured global horizontal 

irradiance (GHI) and diffuse horizontal irradiance (DHI) (GUEYMARD, 

1987; HAY and DAVIES, 1980; KLUCHER, 1979; LIU and JORDAN, 

1961; PEREZ et al., 1990; PEREZ et al., 1987; PEREZ et al., 1986; 

TEMPS and COULSON, 1977). The models usually differ in the way the 

diffuse radiation is calculated. The first generation model proposed the 

conversion of the global horizontal to the tilted irradiation by assuming 

that the total sky diffuse irradiation content is isotropically distributed 

(LIU and JORDAN, 1961). However, this assumption is not strictly true. 

Newer models treat the diffuse radiation component as anisotropically 

distributed, where the irradiance is treated as the sum of circumsolar and 

background sky diffuse components (GUEYMARD, 1987; HAY and 

DAVIES, 1980; KLUCHER, 1979; PEREZ et al., 1990; PEREZ et al., 

1987; PEREZ et al., 1986; TEMPS and COULSON, 1977). 

Figure 35 shows one of the findings of Khoo, Nobre et al. where 

the application of these irradiance models in Singapore was conducted. It 

illustrates a polar contour plot of annual tilted irradiance for various 

orientations and tilt angles in the country. It can be seen that a surface 

oriented towards East with tilt angle of ~10° will yield maximum annual 

irradiation (equal to 1,535 kWh/m2) (KHOO, NOBRE, et al., 2014). This 

could be explained from the fact that Singapore is usually sunnier in the 

morning part than in the afternoon as indicated and also due to late 

afternoon rain showers, typical of a tropical location. 

Secondly, a publication by Yang, Dong et al. addressed 

transposition and decomposition models via a reverse process of 

modeling irradiance at tilted surfaces by utilizing data from tilted silicon 

sensors themselves deployed in the field at PV system sites, with the aim 

of finding GHI and then validate the conversion from GHI readings 

recorded by another irradiance instrument on site (YANG, DONG, et al., 
2013). The work demonstrated low errors in the conversion between tilted 

global irradiation in the plane of the array of a PV system back into GHI 

values. Such finding allows that irradiance devices deployed at PV 

systems at a certain location be converted into GHI values and contribute 

to solar resource mapping for a region and even forecasting efforts. 
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Figure 35: Extrapolation of empirical data for the SERIS meteorological 

station showing highest point of irradiation capture for ~10° of tilt, East 

oriented (KHOO, NOBRE, et al., 2014). 

A further contribution addressed improvements of the Perez model 

for the target location of Singapore by making adjustments to the model 

via readings from available flat and tilted irradiance devices (YANG, D., 

YE, Z., et al., 2014). Notwithstanding the mentioned publications, the 

Perez model still provides sufficiently low errors, also for a tropical 

location in Singapore, thus being commonly used for simulations for 

projects in the Southeast Asia region and for modeling within this thesis. 
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2.2.4 Irradiation data sources and considerations 

In order to work with irradiance models for a certain region of the 

world for any particular goal – but especially for renewable energy (e.g. 

resource assessment for photovoltaics applications) – one usually sets out 

to find existing historical data for the site of interest. That is often not easy 

as the availability of ground irradiance data is poorly linked with the 

availability of meteorological stations (as presented in 2.2.1).  

A solution around that would be satellite data. However, data from 

such imagery inherently carry complications, such as accuracy 

compromises between temporal and spatial synchronization to Earth’s 

ground measurements for later validation. Moreover, some sources have 

been known to overestimate values due to difficulty in accounting for 

terrain and other geological formations. NASA satellite-derived data 

(NASA, 2013) is a good example of such over- and sometimes 

underestimation. As a further example, the Brazilian Institute for Space 

Research (Instituto Nacional de Pesquisas Espaciais – INPE) in its atlas 

for solar irradiance resource in Brazil (PEREIRA, E.B. et al., 2006) has 

reported overestimation of global horizontal irradiance (GHI) values from 

satellite models versus ground measurements. 

A typical meteorological year (TMY) is an average of at least 10 

years of meteorological data from a certain location of the world. The 

difference between TMYs and the actual present year under evaluation 

could fluctuate, according to normal year-on-year variations, ±10% 

(WILCOX and MARION, 2008). Ranges venturing outside of this 

threshold are considered rare and are normally associated with extreme 

weather phenomena (e.g. during an El Niño year). 

When using TMY data from a country or region, a user has to take 

into consideration one important aspect: the data might have been 

recorded from a period of time long ago, from e.g. 1960-1980. In their 

work, Robert et al. (ROBERT and KUMMERT, 2012) studied the effect 

of using older TMY data for designing net-zero energy buildings of today. 

It was investigated in the publication that global warming considerations 

and weather change should be taken into account when performing 

simulations with older irradiation data, so that results do not deviate from 

what the weather will be like 20-30 years from now. 

 Another irradiation database source commonly used in PV 

applications is from the software Meteonorm, from company Meteotest, 

with over 8,000 weather stations worldwide. The database is made 

available in the commonly-used, commercial-based PV system 

simulation software PVSYST (METEOTEST, 2015). 
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2.3 CHARACTERIZING TROPICAL CLIMATE 

2.3.1 Preliminary remarks 

When dealing with solar irradiance forecasting and, at the same 

time, with the performance of photovoltaic systems based on a given solar 

energy resource, one must understand the weather characteristics of the 

location under investigation. 

For Singapore, the country covered in this thesis, high average 

daily ambient temperatures and relative humidity are found year round. 

Located at 1 degree North of the Equator, and having a climate classified 

exclusively as tropical (FONG, 2012), Singapore has little or 

unnoticeable seasons, except for a clear differentiation between rainy and 

dry seasons, characterized by the presence of monsoons.  

For a PV system, the local weather conditions can be translated 

into what circumstances an installation experiences on a daily basis. As 

an example, Figure 36 shows module temperatures in Germany and in 

Singapore, highlighting the warmer condition the tropical location system 

experiences in relation to the temperate location. At 1,000 W/m2, a PV 

panel in Singapore is ~10° C hotter than in Germany. 

 

 

Figure 36: Module temperature increase versus irradiance on module plane 

as registered in Singapore and Germany (NOBRE et al., 2015 (under 

preparation)). 
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2.3.2 Singapore climate 

Storms are common in tropical regions. For the case of Singapore, 

fast approaching rain clouds from Malaysia (from the North) and from 

Indonesia (from the East, West and South) can change weather conditions 

and irradiance levels quite rapidly. As an example, and as previously 

shown in Figure 11, a “Sumatra squall”, a commonly known weather 

phenomenon in the region, is characterized by a fast-moving and sudden 

rain-storm front originating from Indonesia, however, predominantly 

from the West (FONG, 2012). 

There are two monsoon seasons in Singapore – a Northeastern, 

taking place between November and March, and a Southwestern, between 

April and June. The rainiest months of the year are usually November and 

December (FONG, 2012). 

The local solar resource is abundant. A recorded TMY for annual 

global horizontal irradiance (GHI) and diffuse horizontal irradiance 

(DHI) is 1,631 and 926 kWh/m2 respectively for a ground meteorological 

station at Changi Airport (METEONORM, 2013). These annual averages 

represent a diffuse share of ~57% from the total global irradiance, 

characterizing common cloudy conditions for Singapore. 

SERIS has commissioned in May 2010 a comprehensive 

meteorological station, with some of its sensors seen in Figure 37. The 

station was deployed primarily due to the lack of PV-focused irradiance 

measurements available in the country. The setup possesses 9 silicon 

sensors installed at several tilt angles (0, 10, 20, 30 and 40 degrees facing 

an arbitrary orientation, followed by 4 façade silicon sensors tilted at 90 

degrees, facing North, South, East and West). Additionally, the station 

has two pyranometers for global (GHI) and one for diffuse irradiance 

(DHI) as previously shown in Figure 33, among other classical 

meteorological sensors such as air temperature & relative humidity, wind 

speed & direction, and atmospheric pressure. 
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Figure 37: SERIS meteorological station rack, with tilted silicon sensors 

ranging from 0 to 40 degrees (source: SERIS). 

From Figure 38, which stems from data records of the SERIS 

meteorological station for year 2011, it can be seen that the little 

seasonality in Singapore is demonstrated by a small variation of the 

ambient temperature profile in the country, with a daily annual average 

around 27-29°C. Dips can be seen between the months of November and 

February, which are associated with the Northeastern monsoon period. 

 

 

Figure 38: Ambient temperatures in Singapore for the year 2011. The daily 

averages are plotted in orange (SERIS, 2011). 
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The irradiance profile for the country also shows little seasonal 

variations. The SERIS meteorological station has recorded for 2011 the 

following results for global and diffuse irradiance components as shown 

in Figure 39. Important to note is the high diffuse content, registered at 

55% for the year depicted (METEONORM, 2013). 

 

 

Figure 39: Global (GHI) and diffuse horizontal irradiance (DHI) in 

Singapore for the year 2011 (SERIS, 2011). 

The numbers shown in Table 4 highlight the high diffuse 

irradiation component in a tropical location, with shares of diffuse over 

global irradiation (diffuse fraction, kd) of above 50%. The typical 

meteorological year (TMY) averages for Singapore are also shown. It is 

extremely rare to have a total clear sky day condition in Singapore. One 

of such occurrences was the 5th of August 2011 and the plot of global 

horizontal irradiance (GHI) recorded by the SERIS meteorological station 

was seen in Figure 26. The cloudless day shown as a red line is an 

extremely rare condition, taking place once or twice throughout a year. 

The time series in blue, also plotted in the same figure, is more 

representative of a typical day in the island, with ups and downs in 

irradiance due to high cloud content and motion. 

The clear sky example presented in Figure 26 also brings another 

piece of important information about irradiance conditions in the 

Singapore environment – the peak irradiance achieved at an approximate 

zenith time of 13:15 pm from that August day shows irradiances around 

920-950 W/m2, not reaching the theoretical value of 1,000 W/m2, 
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discussed in section 2.2.1. That can be explained by the fact that 

Singapore has high values of relative humidity (see Figure 40), thus the 

water vapor content in the air presents extra blockage for the light to reach 

the Earth’s surface. Moreover, it could be inferred that the presence of 

aerosols in Singapore’s air has levels above thresholds which would 

normally be found in non-heavily urbanized locations of the world. 

Table 4: Typical meteorological year averages for Singapore and results for 

2011 through 2014 for the SERIS meteorological station. TMY source: 

(METEOTEST, 2015). Other data source: SERIS. 

 TMY 2011 ΔTMY 2012 ΔTMY 2013 ΔTMY 2014 ΔTMY 

GHI 
[kWh/m2] 

1,631 1,552 -4.8% 1,595 -1.9% 1,578 -3.2% 1,658 +1.7% 

DHI 
[kWh/m2] 

926 854 -7.8% 872 -5.8% 858 -7.3% 898 -3.0% 

kd  
[%] 

56.8% 55.0% -1.8% 54.7% -2.1% 54.4% -2.4% 54.2% -2.6% 

Tamb  
[°C] 

27.7 27.6 -0.4% 27.8 +0.4% 27.9 +0.7% 28.0 +1.1% 

 

In terms of relative humidity records in this tropical location, the 

daily average values are quite high in the 80s (see in purple in Figure 40), 

with daily readings ranging from 50-100% (SERIS, 2011). 

 

 

Figure 40: Relative humidity in Singapore for the year 2011 (SERIS, 2011). 
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In cloudy days, the so called “cloud-edge effect”, or potentially a 

“cloud-enhancement effect” (see Figure 41, left and right respectively), 

might take place whereby reflection at the cloud borders increases solar 

irradiation at the surface depending on the geometry sun-cloud-ground 

(cloud-edge effect), or light that is enhanced by a cloud working as a lens 

(cloud-enhancement effect), increasing irradiance measured values above 

the theoretical clear sky solar irradiance. Either one of these two 

phenomena could be seen in Figure 26 (as the blue time series), with 

readings going above the theoretical ground maximum baseline. Burger 

and Rüther (BURGER and RÜTHER, 2006) reported such occurrences 

versus PV system inverter behavior and how it can affect overall system 

performance. Almeida et al. reported an irradiance peak of 1,590 W/m2 

in São Paulo (ALMEIDA et al., 2014). 

 

 

Figure 41: Examples of cloud-edge and cloud-enhancement effects, as 

captured by SERIS’ sky cameras and validated by ground-measurement 

irradiance spikes (GHI > 1,000 W/m2) on sensors (source: SERIS). 

The statistics of solar irradiance in Singapore for one year (2011) 

are plotted in Figure 42. On the left, irradiance occurrences above 950 

W/m2 are equal to 4% of the cases. On the other hand, the right graph 

shows the irradiance energy distribution (hence irradiation itself), with 

circa 12% of the energy resource above the 950 W/m2 threshold. 

With Singapore being a small country (~720 km2) and with a 

relatively flat terrain, weather conditions do not vary considerably 

through its land area. Although some districts like Clementi (at slightly 

higher ground, 50-100 m AMSL) and the Bukit Timah Reserve are rainier 
than others, the solar irradiance resource is relatively constant, at a typical 

meteorological year average of 1,631 kWh/(m2.yr) (METEONORM, 

2013). Thus far, via SERIS’ recordings in several areas of the island 
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through the past five years (2010-2015), the annual irradiation records 

have not crossed the ±10% variation thresholds of the TMY. 

 

 

Figure 42: Irradiance frequency (left) and energy distribution (right) in 

Singapore for 2011 (SERIS, 2011).  

Singapore’s National Environment Agency (NEA) has a weather 

radar (Selex Model Meteor 1600S-89 Dual Polarization S-Band radar) 

located at Changi Airport in the Eastern part of the island. This Doppler 

radar captures images as the one seen in Figure 43, but also earlier in 

Figure 11. The range of the radar is 70 km.  

 

 

Figure 43: Singapore weather radar located at Changi Airport (FONG, 

2012). 

The solar energy resource in Asia is abundant. Figure 44 shows a 

satellite-derived irradiance map from company GeoModel Solar 

presenting excellent resource for upcoming PV growth markets such as 

China, India, Thailand, Malaysia and Philippines (SOLARGIS, 2012). 
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Figure 44: Average annual global horizontal irradiation profile for South 

and Southeast Asia (SOLARGIS, 2012). 

Apart from the presence of rain showers, constant cloud motion 

and their lower cloud base height in the tropics make it generally difficult 

to predict irradiance conditions for short-term PV applications. An 

extreme condition observed frequently during the rainy season is a 

prolonged precipitation episode across the island due to its small size. 

Under such condition, PV power output drops virtually everywhere in 

Singapore, which would need to be compensated by conventional power 

generators in a future with a considerable share of solar PV. 

Beyond fast-changing irradiance levels due to clouds, specific 

weather conditions occur in Singapore, especially entire days of island-
wide rain showers (“washouts”) or instances when air pollution from 

nearby forest fires (“haze”) cover parts or the total area of the city-state 

(see 2.3.3). For washouts, the challenge to grid operators lies on the 

diminishing solar PV power output almost entirely in Singapore in a short 
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period of time, whereas hazy skies reduce the power output of PV systems 

by noticeable levels, as it is addressed in the literature review (in 2.3.3), 

later in a section of the method of this thesis (see 3.4.3), with results on 

the topic shown in 4.2.2. 

Table 5 presents weather statistics for 2013 and 2014 as recorded 

by SERIS’ meteorological station and by the National Environment 

Agency (NEA, for the case of the air pollution readings) (NEA, 2014b). 

The number of days with the occurrence of sudden storms, washouts and 

haze episodes are listed. It can be seen that nearly one third (32%) of the 

days in 2013 had drastic variations of irradiance values from the presence 

of sudden storms, with a smaller number taking place in 2014 (27%). 

All in all, more than 40% of the days in 2013 posed some level of 

severe weather event, be it a storm, a washout or a hazy day (with strong 

air pollution concentrations).  In comparison, the sunnier year of 2014 had 

severe episodes in about one third of the total number of days of that time 

span. Total annual irradiation for 2013 for an average of nine ground 

measurement sites spread across the island via calibrated silicon sensors 

was 1,491 kWh/m2, whereas for 2014 for the same stations the value was 

1,580 kWh/m2, i.e. ~6% higher than the previous year.  

Table 5: Weather statistics for 2013 and 2014 in Singapore including days 

with sudden storms, total “washout” conditions and with strong air pollution 

(“haze”) (NOBRE et al., 2015 (submitted)). 

Month 

Sudden 

storm days 

Washout 

days 
Haze days 

Average 

daily 

irradiation 

2013 2014 2013 2014 2013 2014 2013 2014 

Jan 8 5 3 2 0 0 3.84 3.94 

Feb 8 2 4 0 0 0 3.42 5.25 

Mar 13 8 0 1 0 0 4.93 5.04 

Apr 8 13 2 1 0 0 4.25 4.51 

May 9 9 1 2 0 0 3.92 4.21 

Jun 8 8 0 0 18 0 4.42 4.23 

Jul 9 8 3 2 0 0 3.96 4.04 

Aug 10 7 1 3 0 0 4.32 3.89 

Sep 6 4 5 0 0 4 3.95 4.92 

Oct 13 10 0 1 0 6 4.67 4.55 

Nov 14 15 2 1 0 1 3.85 3.96 

Dec 9 9 3 3 0 0 3.44 3.45 

Total 115 98 24 16 18 11 1,491 1,580 

%Year 32% 27% 7% 4% 5% 3% n/a n/a 
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Figure 45 shows a sequence of sky images encompassing the 

period when a sudden storm approached a ground measurement station. 

Every image interval is spaced 5-min apart. It can be observed in the 

sequence that in a matter of circa 30 minutes, the sky conditions went 

from relatively clear (irradiance ~800 W/m2) to a total “washout” 

condition, with irradiance nearly zero. The irradiance profile for the day 

is shown on the top left of the image, with a red square delineating the 

period which the images belong to. 

In Figure 46, a typical irradiance day in Singapore is illustrated, 

where variable cloud cover conditions are present. The interval between 

sky images is also 5-min as per Figure 45. It can be observed that virtually 

half of the images have the sun covered by a broken cloud, which equate 

to an irradiance level – as per top left of the image and at that time of the 

day – of ~400 W/m2, whereas the other half of the images show nearly 

the entire circumference of the sun clear from clouds, with equivalent 

irradiances of ~1,000 W/m2. 
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Figure 45: Sequence of sky images during a sudden approaching storm in 

Singapore, 14:00-15:20, in 5-min intervals (source: SERIS). 
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Figure 46: Sequence of sky images during a typical irradiance day in 

Singapore, 12:00-13:20, in 5-min intervals (source: SERIS). 
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When severe weather events happen as previously discussed for 

Singapore, they present challenges in predicting solar irradiance but also 

opportunities for innovative ways of improving these forecasts. Figure 47 

(top) shows the observed global horizontal irradiance (green continuous 

line) in 15-min intervals at a central meteorological station in Singapore 

on a day when a sudden storm hit the island (21st Apr 2013). Such a day 

is similar in weather as shown in Figure 45. The 15-min ahead Auto-

Regressive Integrated Moving Average (ARIMA) and Persistence 

irradiance forecasts are shown (red-dashed and blue-dotted lines 

respectively). The resulting error spikes between the forecasts and the 

measured values of irradiance can be seen and are also quantified in 

Figure 47 (bottom). Such higher uncertainties occurred due to sudden 

drop in irradiance caused by the arrival of dark rainy clouds. Since both 

ARIMA and Persistence forecasts are dependent on past information for 

the calculation of the step-ahead irradiance, the error in the prediction is 

unavoidable. Such peaks in the forecast error time series present 

opportunities for enhancement of short-term irradiance forecasts. 
 

 

Figure 47: Top – Measured and forecast values for global horizontal 

irradiance (GHI) at a central meteorological site in Singapore in a day with 

a sudden storm, and associated errors (NOBRE et al., 2015 (submitted)). 

  



 

 

96 

2.3.3 Air quality issues in Southeast Asia 

Air pollution caused mainly by forest fires for agricultural 

purposes (anthropogenic-induced haze) in Southeast Asia has become a 

problem in recent decades (BRAUER and HISHAM-HASHIM, 1998; 

FIELD et al., 2009; NICHOL, 1998; QUAH, 2002). The clearing of forest 

vegetation and land for farming purposes has sparked continuous political 

debate among nations as the resulting smog covers skies above vast land 

areas (HUSSAIN, 2013; ZENGKUN, 2013a). Fires often originate from 

within Indonesian borders, with the wind transporting smoke clouds to 

neighboring countries such as Singapore and Malaysia (MIETTINEN and 

LIEW, 2009; VELASCO and ROTH, 2012). In Singapore, located 150-

300 km East of most forest/land fire “hot spots” in Sumatra, Indonesia, a 

so-called “haze season” is an annual event, causing reduced air quality  

which, in turn, trigger population and government outcry (TEO, 2013; 

ZENGKUN, 2013b). Depending on the prevailing wind direction, some 

of the fires might also originate from Borneo, ~600 km East of Singapore 

(VELASCO and ROTH, 2012). 

Most haze periods take place between the months of August and 

October, which coincides with the dry monsoon season (Southwest 

monsoon) for the region (NEA, 2014a). Haze events are further 

accentuated through the absence of rain showers, as air pollution fumes 

take longer to dissipate. Figure 48 shows two images of the Marina Bay 

area in downtown Singapore under moderate and unhealthy air pollution 

levels during the haze crisis of June 2013. 

 

 

Figure 48: Images of the Marina Bay area in downtown Singapore on (a) a 

day with air quality in the moderate range and (b) on a day with values in 

the very unhealthy range. Photo courtesy of Monika Bieri-Gmuer. 

 



 

97 

The National Environment Agency of Singapore (NEA) created 

the Pollutant Standards Index (PSI) in 1997, which aims at informing 

stakeholders and the general public on daily air quality levels in the 

country (VELASCO and ROTH, 2012). The PSI measures concentrations 

of particulate matter of 2.5 microns in size (PM2.5), among other 

pollutants (NEA, 2014b). NEA used concentration of particulate matter 

of 10 microns in size (PM10) up to March 2014 as a primary indicator of 

the air pollution levels, with the PM2.5 readings being incorporated into 

the scale from April 2014 onwards. A PSI under 50 receives a qualitative 

rating of “good”, with other PSI ranges categorized as “moderate” (51-

100), “unhealthy” (101-200), “very unhealthy” (201-300) and 

“hazardous” (> 300). NEA monitors PSI at 5 major areas of the island 

(North, South, East, West, and central) at 1-hour intervals, generating 3-

hour and 24-hour pollutant concentration reports. Before the haze crisis 

of June 2013, PSI readings were taken in 3-hour intervals. As of early 

2015, the most recent major haze event took place in June 2013, with the 

24-hour average PSI reaching a peak of 246, and the 1-hour reading 

reaching an all-time high of 401 a few days later (NEA, 2013b). Prior to 

June 2013, readings were only taken every 3 hours. Figure 49 shows the 

historical frequencies for 24-hour PSI concentrations for the time period 

of 2009 to 2013, as recorded by the local environment agency. An average 

of 7% of all days in the 5-year span fell outside of the “good” range of the 

scale. The 24-hour average of PSI values for May through July 2013 

(bottom) shows an 18-day strong haze period in which the pollutant index 

crossed into the “very unhealthy” range. 

It is only natural that the first major concern when haze occurs is 

linked to medical implications in terms of the detrimental influence air 

pollution has on the health of children, elderly and individuals with heart 

or respiratory illnesses (FRANKENBERG et al., 2005; JAMROZIK and 

MUSK, 2011; SASTRY, 2002). Haze could also affect other aspects of 

life, such as the ecosystem and climate change, but those effects are still 

being investigated (VELASCO and ROTH, 2012).  
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Figure 49: Five categories of the Pollution Standards Index (PSI) plotted for 

their annual frequencies and for a period of three months (NOBRE et al., 

2015 (accepted)). 

Singapore’s air quality levels also get affected by its industrial 

sector, which includes refineries, chemical and electronic industries, and 

power plants for electricity generation (which however burn natural gas 

and hence are less polluting than e.g. coal- or oil-fired power plants)  

(VELASCO and ROTH, 2012).  Furthermore, the country has one of the 

busiest ports and airports in the world, a population of 5.4 million in a 

small area and nearly one million vehicles on the streets (LTA, 2014). All 

these components present additional sources of pollutant gases and 

aerosols that contribute to day to day poor air quality levels in the country. 

A baseline PSI of 30 to 50 points is therefore seen on a regular basis (see 

Figure 49 bottom for PSI records prior to the haze crisis of June 2013). 
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In a trivial sense, the haze blocks the irradiation from reaching the 

Earth’s surface. Although investigations on the haze influence on 

irradiation date back decades, they were either linked to examples in 

military applications (CHEN, 1975), or to medical studies (health-related 

hazards), such as UV exposure (ESTUPIÑÁN et al., 1996). In Brazil, the 

presence of aerosols from forest fires was assessed to explain deviations 

in satellite data which are concurrently used for the assessment of 

irradiances levels in parts of the country (PEREIRA et al., 2000). In 

regards to the topic of air pollution with a direct link to renewable energy 

usage, available works are limited, without straight results to haze and 

real-world PV system performance in the field. Calinoiu et al. reported a 

loss of irradiation of 20% at the surface during periods of strong air 

pollution in Romania with the goal of assessing the impact of such 

occurrences on future solar PV deployment (CALINOIU et al., 2013). 

Faine et al. investigated spectral, air mass and also aerosol optical depth 

(turbidity) changes in their pioneer work in the 90s. Simulations were 

used to obtain results of the effects of the parameters to various high and 

low band gap PV devices (FAINE et al., 1991). More recently, Fernández 

et al. evaluated change in spectra at five different locations in the world 

(measured by local meteorological stations). The authors evaluated the 

consequences of the changed spectra to their four different simulated high 

concentrator photovoltaic modules (FERNÁNDEZ et al., 2014). 

The spectrum shift caused by the haze can be observed to affect 

PV system performance. Liu et al. presented measured daily performance 

ratios of 10 PV systems in Singapore for the period of May 2013 to July 

2013 (see Figure 50). Five amorphous silicon thin-film systems (top five 

curves) and five multicrystalline silicon wafer-based systems (bottom 

five curves) are shown. The lines represent the 3-day moving averages as 

a guide to the eyes, with the haze period marked by vertical dashed lines 

(LIU et al., 2014b). 
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Figure 50: Measured daily performance ratios of 10 PV systems of two main 

technologies in Singapore for the period of May to July 2013 (LIU et al., 

2014b). 

The influence of haze, which has been occurring on an annual basis 

lately in Singapore, is therefore a phenomenon that needs to be 

understood and quantified for a realistic assessment of the performance 

and yield of future PV installations. Especially during the recent haze 

event of June 2013, PV system owners and investors have sought for 

answers on the amount of energy loss which would eventually have 

affected their assets’ returns on investment. 
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2.3.4 Other tropical climates around the globe 

A list of countries across the world which have tropical weather 

within their territories, as classified by the Köppen-Geiger climate 

classification (PEEL et al., 2007), can be seen in Table 6. 

Table 6: List of countries with tropical climate conditions, adapted from 

(PEEL et al., 2007). 

Country Continent Population 
[million 

inhabitants] 

Latitude 

Range 

Time 

Zone 
[UTC] 

India Asia ~1,210 8-35°N +5.5 

Indonesia Asia ~256 5°N-10°S +7/9 

Brazil South America ~200 4°N to 33°S -2/5 

Nigeria Africa ~175 4-14°N +1 

Philippines Asia ~101 6-19°N +8 

Vietnam Asia ~91 8-23°N +7 

Thailand Asia ~67 6-20°N +7 

Malaysia Asia ~31 1-7°N +8 

Peru South America ~31 1-18°S -5 

Chile South America ~18 17-55°S -3/5 

Singapore Asia ~6 ~1°N +8 

TOTAL  ~2,187   

 

The selection of the ten countries as per Table 6 (plus Singapore 

the location of study within this thesis) is aimed at highlighting countries 

with substantial presence of tropical climate. They account to a 

considerable amount of inhabitants of the planet. 

As these countries are mostly developing nations, it is expected 

that they are bound to have strong and growing energy needs for years 

and decades to come. 

Somewhat exploring on the weather patterns in one of these 

example nations, Brazil and its enormous land area (8.5 million km2, 

being the fifth biggest country in the world), possesses a variety of climate 

conditions throughout its territory, but in its great majority tropical and 

subtropical weather. For Brazil, and as previously mentioned in 2.2.4, 

INPE has produced a solar resource atlas based on satellite measurements 
and solar radiative models (PEREIRA, E.B. et al., 2006). Figure 51 shows 

two of such images produced by the publication. 

The North part of the country at the Amazon basin area is the 

rainiest region of Brazil, also the cloudiest (PEREIRA, E. B. et al., 2006). 
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That makes the Northern territory of the country and these locations near 

the Equator cloud-rich, which can be seen from Figure 51, right. The city 

of Belém (~1°S) has a similar climate to the one found in Singapore.  

 

 

Figure 51: Annual global horizontal irradiance (GHI) and diffuse horizontal 

irradiance (DHI) in the Brazilian territory (PEREIRA, E. B. et al., 2006). 

The irradiation in Brazil is strongest in the region covering the 

Northeastern territory all the way to the Southeastern region. The highest 

irradiance months are during spring (Sep-Oct) with the lowest in winter 

(Jun-Jul). The annual average for GHI (Figure 51, left) highlights these 

regions in the lightest shade of orange. Total annual irradiance levels 

range from a lowest of 1,550 kWh/m2, in the Southern part of Brazil at 

the North portion of the state of Santa Catarina, to 2,350 kWh/m2, in the 

best solar-resource area, in the Northern areas of the state of Bahia 

(PEREIRA, E. B. et al., 2006). To exemplify the solar potential of the 

country, the least sunny capital in Brazil receives ~40% more solar 

irradiation than the sunniest region in Germany (RÜTHER, 2004). 

Table 7 shows key meteorological information for photovoltaic 

purposes for nine capitals in Brazil, organized from latitudes closest to 

the Equator to furthest from it (NASA, 2013). From a pool of the 

mentioned cities, annual average of global horizontal irradiation (GHI) is 

1,790 kWh/m2, once again emphasizing the excellent solar resource found 

in the South American country. 
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Table 7: Key meteorological parameters for PV applications for some 

capitals in Brazil (NASA, 2013). 

City 

State 

Belém 

PA 

São Luís 

MA 

Salvador 

BA 

Latitude [°] 1°S 3°S 13°S 

GHI [kWh/m2] 1,956 2,180 1,977 

Avg. kd [%] 53.9% 60.3% 55.5% 

Avg. Tamb [°C] 26.5 26.5 25.7 

City 

State 

Brasília 

DF 

Belo Horizonte 

MG 

Rio de Janeiro 

RJ 

Latitude [°] 16°S 20°S 23°S 

GHI [kWh/m2] 1,902 1,838 1,599 

Avg. kd [%] 55.4% 54.6% 47.8% 

Avg. Tamb [°C] 23.8 21.3 22.9 

City 

State 

São Paulo 

SP 

Florianópolis 

SC 

Porto Alegre 

RS 

Latitude [°] 24°S 28°S 30°S 

GHI [kWh/m2] 1,660 1,470 1,528 

Avg. kd [%] 50.3% 45.3% 47.4% 

Avg. Tamb [°C] 21.5 20.7 19.6 

 

As a comparison, Table 8 shows the same characteristics found in 

Table 7 but for capitals in the top-6 countries in installed PV capacity in 

the world (adapted from Table 1). The average annual global irradiation 

for these locations is 1,290 kWh/m2, 28% below the ones in Table 7. 

Table 8: Key meteorological parameters for PV applications for the capitals 

of the top-6 countries in installed PV capacity in the world (NASA, 2013). 

Capital 

Country 

Berlin 

Germany 

Beijing 

China 

Tokyo 

Japan 

Latitude [°] 53°N 40°N 36°N 

GHI [kWh/m2] 968 1,533 1,344 

Avg. kd [%] 38.5% 54.9% 46.3% 

Avg. Tamb [°C] 9.4 8.1 13.9 

Capital 

Country 

Rome  

Italy 

Washington 

D.C 

USA 

Paris 

France 

Latitude [°] 42°N 39°N 49°S 

GHI [kWh/m2] 1,443 1,383 1,067 

Avg. kd [%] 49.7% 47.0% 39.9% 

Avg. Tamb [°C] 14.6 12.5 11.2 
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2.4 SOLAR IRRADIANCE FORECASTING 

2.4.1 Preliminary notes 

Global efforts on solar irradiance forecasting have intensified in 

the past half-decade (2010-2015) with the strong growth on levels of 

penetration of PV and other renewables into grids. Inman et al. 

summarized several methods and examples for solar irradiance 

forecasting (INMAN et al., 2013). In the comprehensive review, cited 

publications were shown which tackled different forecast horizons and 

investigation locations around the world. Among ~100 cited works of 

forecasting techniques applied for solar PV, the great majority of 

publications were for studies in the United States, Europe and Japan, 

which highlights that research efforts on this topic were, and still are, 

primarily focused where solar PV markets are prolific. As previously 

addressed, those locations also happen to be primarily dominated by more 

temperate climates. 

Research on solar irradiance forecasting has focused mostly on 1-

hour to 3-hour intervals (intra-day forecasts) and day-ahead intervals 

(MARQUEZ and COIMBRA, 2011; MARQUEZ et al., 2013; PEDRO 

and COIMBRA, 2012). 

Various forecasting techniques were developed and demonstrated 

at many locations in the world, as mentioned, predominantly where PV 

deployment has flourished, using several methods such as numerical 

weather prediction models (DIAGNE et al., 2014; LARA-FANEGO et 

al., 2012; LORENZ et al., 2012; MATHIESEN and KLEISSL, 2011; 

PEREZ et al., 2013), stochastic methods, e.g. auto-regressive integrative 

moving average (ARIMA) (MASA-BOTE and CAAMAÑO-MARTÍN, 

2010; YANG, SHARMA, et al., 2015), artificial intelligence, e.g. 

artificial neural networks (ANN) (CAO, J. C. and CAO, S. H., 2006; 

FONSECA JUNIOR et al., 2014; MARQUEZ and COIMBRA, 2011; 

MELLIT and KALOGIROU, 2008; MELLIT and PAVAN, 2010), 

sky/satellite imagery analysis (MARQUEZ and COIMBRA, 2013; 

YANG, H. et al., 2014) and even a combination of techniques (DA 

SILVA FONSECA et al., 2012; DONG et al., 2014; MARQUEZ et al., 
2013; NONNENMACHER and COIMBRA, 2014). Previous works on 

solar forecasting in Singapore have used some of these approaches 
(DONG et al., 2014; 2013; YANG, D., DONG, Z., et al., 2014; YANG 

et al., 2012; YANG, WALSH, et al., 2013). 

Figure 52 shows range of appropriate techniques utilized in solar 

irradiance forecasting.  
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Figure 52: Time horizon versus spatial resolution for solar irradiance 

forecasting and suitable techniques for application. Source: (INMAN et al., 

2013) 

The leading groups in the world for solar irradiance forecasting are 

relatively new, with most of the research having taken place in the 2010 

to 2015 span, as some of the literature presented attest. Some of these 

names and associated publications can be mentioned below: 

 

- Energy Meteorology Unit of the University of Oldenburg, 

Germany: (LORENZ et al., 2012; LORENZ et al., 2011); 

 

- University at Albany, United States and National Renewable 

Energy Laboratory (NREL), Golden, Colorado: (PEREZ et al., 

2010; PEREZ et al., 2007); 

 

- University of California San Diego (UCSD), United States of 

America, with the Coimbra Forecasting Group: (CHU et al., 

2013; INMAN et al., 2013; MARQUEZ and COIMBRA, 2011; 

2013; 2012; MARQUEZ et al., 2013; NONNENMACHER and 

COIMBRA, 2014; PEDRO and COIMBRA, 2012; ZAGOURAS 

et al., 2015); 

 

- University of California San Diego (UCSD), United States of 

America, with the Kleissl Group: (CHOW et al., 2015; CHOW 
et al., 2011; GOHARI et al., 2014; KLEISSL, 2013; 
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LIPPERHEIDE et al., 2015; MATHIESEN et al., 2013; 

MATHIESEN and KLEISSL, 2011; URQUHART et al., 2015);  

 

- Brazilian Institute for Space Research (INPE): (LIMA et al., 

2014; MARTINS et al., 2012).  

 

Some isolated work has taken place in China (CAO, J.C. and CAO, 

S.H., 2006; CHEN et al., 2011), Japan (DA SILVA FONSECA et al., 
2012; FONSECA JUNIOR et al., 2014; FONSECA_JR. et al., 2013), 

Italy (MELLIT and PAVAN, 2010), Saudi Arabia (EISSA et al., 2013), 

and a few other locations. 

Other factors could play a role in irradiance forecasting beyond 

cloud coverage, such as aerosol concentration (GUEYMARD, 2012). 

Comments on aerosol influence were made in subsection 2.3.3 and are 

later addressed in other areas of this thesis. 

Section 2.4 serves as identification of relevant literature in the solar 

irradiance forecasting area of photovoltaics. It helps set the tone for the 

state-of-the-art in this specific field. 

2.4.2 Stochastic methods 

Pedro and Coimbra investigated a mix of results for the Persistence 

method (assuming the next time horizon to be the same condition as the 

previous one), nearest neighbor (estimation of a station reading based on 

the closest site from it) and ARIMA (autoregressive integrating moving 

average) for a site in California (PEDRO and COIMBRA, 2012). 

Yang et al. (YANG et al., 2012) have tested an ARIMA method 

using cloud cover index with some success for Singapore.  

Other research covering stochastic methods include (MARQUEZ 

and COIMBRA, 2011; MASA-BOTE and CAAMAÑO-MARTÍN, 2010; 

YANG, SHARMA, et al., 2015). It is common that a combination of 

techniques is involved, in order to also explore lower errors. In most of 

the cases, a stochastic element is present, as part of the works of 

(ARYAPUTERA et al., 2015; CHU, LI, et al., 2015; CHU et al., 2013; 

CHU, URQUHART, et al., 2015; DONG et al., 2014; LIPPERHEIDE et 
al., 2015; MARQUEZ et al., 2013; NONNENMACHER and COIMBRA, 

2014).  
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2.4.3 Satellite and numeric weather prediction 

When using satellite data, one of the challenges is in the temporal 

and spatial synchronization between the satellite image itself and ground 

measurement recorded (JOURNÉE et al., 2011). A satellite image taken 

on top of Southeast Asia is seen on Figure 53, with Singapore highlighted. 

 

 

Figure 53: Southeast Asia satellite image with Singapore highlighted inside 

the circle (NEA, 2010). 

Work has advanced in the analysis of pre-processed regional NWP 

forecasts, such as presented by Lorenz (LORENZ et al., 2012; LORENZ 

et al., 2011). Mathiesen and Kleissl also worked with a NWP for the 

forecasting trials in the United States (MATHIESEN and KLEISSL, 

2011). 
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The WRF numerical model (Weather Research and Forecasting 

Model) has been developed as a co-operation among several research 

institutes in the world. It has first been used for classical numerical 

weather predictions, later being adapted for wind applications in 

renewable energy. Recently, WRF has gained momentum for day-ahead 

solar irradiance forecasting efforts. 

Lima et al. used the WRF model together with other statistical 

methods for forecasts for the Northeastern region of Brazil. Since the 

climate varies considerably in the region, a cluster analysis was used. The 

forecast horizon was set for one day-ahead (LIMA et al., 2014). 

As the thesis focuses on short-term solar irradiance forecasting, the 

utilization of numerical methods such as WRF, or of satellite images, are 

not explored. Figure 53 showing a satellite image from Southeast Asia, 

with Singapore marked within the red circle, with the totality of the island 

being only made of a couple of pixels in the image, highlight the vast 

extension involved in modeling the weather, thus making it difficult to 

utilize short-term resources with these products. 

2.4.4 Artificial intelligence methods 

An artificial neural network (ANN), with an schematic shown in 

Figure 54, is a massive parallel processor, made up of simple processing 

units (neurons), which have the ability of storing knowledge (synaptic 

weights) and making it available for posterior use (HAYKIN, 1999). The 

resemblance of ANN with the brain lies on the fact that it has the ability 

to learn from experience from the environment through a learning process 

and store knowledge. 

Major benefits of neural networks can be linked to their ability to 

operate nonlinearly, which makes them suitable for handling phenomena 

with complex physical models, which, in most cases, are difficult or 

impractical to solve via linear functions. The adaptive nature of ANNs is 

an added advantage as their synaptic weights can vary with time. 

The connections between neurons are given in the form of weights 

(the influence of one neuron versus the next), through synapses or 

connecting links. A linear combiner (summing junction in Figure 54) 

merges the respective synapses between neurons. 

The bias acts in the process by creating an effect of increasing or 
lowering the net input into an activation function, depending on whether 

it is a positive or negative bias, respectively. 

UCSD has published works with several configurations of neural 

networks for applications based on data from California (MARQUEZ and 
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COIMBRA, 2011), (PEDRO and COIMBRA, 2012) and (MARQUEZ et 

al., 2013). Mellit has investigated a neural network in Italy focused on 

daily irradiance and ambient temperature from the previous day as input 

parameters (MELLIT and PAVAN, 2010). The goal was to test ANNs for 

one-day-ahead forecasts. The method involved testing different 

configurations of hidden neurons and layers almost at random. After a 

few trials, the authors opted for the most successful method (i.e. the one 

with the smallest RMSE) and proceeded from there into the results 

validation for a PV system in Italy using a simplistic PV performance 

model. 

 

 

Figure 54: Artificial neural network schematic based on a nonlinear model 

of a neuron (HAYKIN, 1999). 

In Brazil, Martins et al. (MARTINS et al., 2012) have combined 

input parameters from a mesoscale model (Eta model, running at INPE) 

for training of an ANN, with training and validation taking place based 

on two ground-measurement solar radiation stations. RMSE 

improvement in the forecasts was in the order of 30%. 

  



 

 

110 

2.4.5 Sky imagery utilization 

Sky imagers (more recently being replaced by cheaper CCD 

cameras with fish-eye lenses pointing at the sky) can capture stills such 

as the ones shown in Figure 55. 

Cloud vectors and classification can be assessed with post-

processing software. In Brazil, Mantelli Neto has written a thesis on 

evaluation of sky images for cloud assessment in the Brazilian territory 

(NETO, 2010). 

 

 

Figure 55: Sky images from cameras with fish-eye lenses (source: UCSD). 

Comprehensive overviews on sky camera utilization for short-term 

forecasting purposes are given by groups in the United States and 

Australia (URQUHART et al., 2015; WEST et al., 2014). 

Significantly fewer publications can be found in the literature on 

short-term forecasting applications (sub-hour level). Marquez and 

Coimbra (MARQUEZ and COIMBRA, 2013) used sky images in 

Merced, California to create short-term forecasts of direct normal 

irradiance of a few minutes up to 15-min. The authors concluded that a 5-

min forecast horizon presented the most significant accuracy for their 

dataset. Yang et al. (YANG, H. et al., 2014) also utilized sky images in 

California to perform short-term forecasts. In winter, with more cloud 

cover in the region, the method proved more effective than in summer 
conditions, where persistence forecasts prevail due to the near clear-sky 

conditions. Normalized root mean square errors (nRMSE) ranged from 

20-27% for 5- and 10-min prediction horizons. 
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Nguyen and Kleissl explored 2D and 3D methods to determine 

cloud base heights (NGUYEN and KLEISSL, 2014), which are features 

of interest in assisting short-term solar irradiance forecasting efforts.  

A network of sky cameras has been deployed in Singapore by 

SERIS to assist on such forecasting efforts. Figure 56 shows the marked 

locations of these devices in the Singapore map. At the time of the 

submission of this thesis, thirteen cameras had been deployed. The 

institute makes live images available via its National Solar Repository of 

Singapore (NSR) website (NSR, 2015e).  

 

 

Figure 56: Deployed network of thirteen sky cameras in Singapore (NSR, 

2015e). 
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2.4.6 Research on short-term solar irradiance forecasting 

Research on solar irradiance forecasting has focused mostly on 1-

hr, intra-day (a few hours) as well as day-ahead intervals, and 

predominantly in countries where PV has reached considerable 

penetration levels. The great majority of the forecast horizons have been 

focused at 1-hour to 3-hour intervals (thus in the intra-day range) 

(MARQUEZ and COIMBRA, 2011; MARQUEZ et al., 2013; PEDRO 

and COIMBRA, 2012).  

For short-term applications (minutes to sub-hourly), much less 

publications can be found, such as Marquez and Coimbra who used a total 

sky imager in California (MARQUEZ and COIMBRA, 2013), Yang et al. 

also utilizing a sky imager in the US state to perform short-term forecasts 

(YANG, H. et al., 2014). 

Yang et al. used a dense monitoring network of irradiance detectors 

in Hawaii to correlate lagged time series in the small sample area for very 

short-term irradiance forecasting. Lasso regression is implemented as a 

parameter selection method. Results achieved showed a further 

improvement over Persistence and other time series methods (YANG, 

YE, et al., 2015). 

2.4.7 Solar irradiance forecasting in the tropics 

Previous work on forecasting in Singapore has used primarily 

statistical approaches (DONG et al., 2014; 2013; YANG, D., DONG, Z., 

et al., 2014; YANG et al., 2012; YANG, WALSH, et al., 2013). Yang et 

al. (YANG et al., 2012) used the cloud cover index as a model input 

parameter, achieving normalized root mean square errors of circa 20% for 

1-hour prediction intervals. The same authors published a novel method 

on spatial temporal kriging for interpolating forecast purposes. With this, 

they argue that the area of Singapore and the specific solar PV systems 

within it, based on their location, could have dedicated forecasting 

products (YANG, D., DONG, Z., et al., 2014).  

Dong et al. (DONG et al., 2013) used an exponential smoothing 

state space  model (commonly abbreviated as ETS) apart from ARIMA. 

A forecast interval of 5-min was implemented, achieving normalized root 

mean square errors of 17-33%. When comparing the new proposed model 

to ARIMA, the authors obtained a few percentage points of improvement, 

with some months with virtual similar forecast accuracies. In a hybrid 

approach, using satellite imagery and the ETS model, Dong et al. (DONG 

et al., 2014) investigated hourly solar irradiance forecasting, with 
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normalized root mean square errors (nRMSE) ranging from 20% to 45%, 

with larger errors occurring during the monsoon season. 

Sharma et al. (SHARMA et al., 2015 (in press)) executed a wavelet 

neural network (WNN) taking averaged irradiance values of 13 stations 

distributed across Singapore for hourly intervals of prediction. Results for 

four different seasons of the year showed slight forecast skill 

improvement over ARIMA, and also over a simpler artificial neural 

networks (ANN) method. 

Aryaputera et al. (ARYAPUTERA et al., 2015) ran the WRF 

numerical model for Singapore, aiming at obtaining day-ahead forecasts 

for the island. RMSEs of ~45% were obtained, with a slight improvement 

over the Persistence method for such 24-hour-ahead products. 

In other tropical and subtropical studies, Khatib et al. (KHATIB et 

al., 2012) generated a four feedback forward propagation neural network 

using relative humidity, ambient temperature, global horizontal 

irradiation and wind speed with data from Kuala Lumpur, Malaysia.  

In a subtropical study, Martins et al. (MARTINS et al., 2012) 

applied ANNs for two sites in Southern Brazil using the new model to 

refine inherent known biases associated with an existing numerical 

weather model. Confidence and reliability were improved by more than 

30% for both sites under study.  
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2.5 PV SYSTEMS SIMULATION AND PERFORMANCE 

2.5.1 Yield and performance ratio of PV systems 

Solar photovoltaic panels are rated at the end of a manufacturer’s 

production line according to the Standard Test Conditions (STC) for PV 

modules, which are characterized as the laboratory indoor setting for flash 

testing set at 1,000 W/m2 irradiance, 25°C PV cell temperature and 

spectral distribution of light equivalent to 1.5 AM (air mass) spectrum 

(IEC, 2011).  

Upon commissioning of a PV system, its quality assessment and 

continuous performance are important gauges to owners and financiers 

on the return on investment for the particular asset. It is important to 

observe and compare performance ratio (PR), which is based on in-plane 

irradiance and total annual yield measured in kWh/kWp per year, versus 

benchmark values for a given place where the asset is located. 

Performance ratio is an internationally-recognized assessment 

parameter for the verification of system design and operational quality. 

As per IEC 61724 standards (IEC, 1998), performance ratio is defined as 

the ratio of the final PV system yield (Yf) over the reference yield (Yr): 

 

PR = 
𝑌f

𝑌r
      (5) 

 

The final PV system yield (Yf) is the net AC energy output (EAC) 

divided by the nameplate DC power (P0) of the installed PV array, i.e.: 

 

Yf =
EAC

P0
         (6) 

 

with the units of hours or kWh/kWp representing the number of hours that 

the PV array would need to operate at its rated power to provide the same 

amount of energy on an annual basis.  

The reference yield (Yr) is the total in-plane irradiance Gmod, 

divided by the photovoltaic reference irradiance, G0 = 1,000 W/m2, i.e.: 

 

Yr =
∑ Gmod

t

G0
         (7) 

 

which represents an equivalent number of hours at the reference 

irradiance set-point. Thus, PR can be expanded by substituting Yf and Yr 

into PR as: 
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PR =
EAC P0⁄

∑ Gmod
t G0⁄

=
G0

P0
×

∑ PAC
t

∑ Gmod
t       (8) 

 

where PAC is the AC power output of a PV system. It should be noted that 

Gmod here should be measured by an irradiance measurement device with 

the same orientation and tilt as the PV array such as the one shown in 

Figure 57. 

 

 

Figure 57: Silicon sensor installed in the plane of the photovoltaic array, here 

10 degrees (source: SERIS). 

With these boundary conditions for performance ratio assessment, 

it could be inferred that PV systems installed at façades could, for 

example, still have a high PR, although their annual yield would be 

considerably lower than a rooftop system due to less irradiance reaching 

the module plane on the vertical surface. From a system design 

perspective, however, it is sufficient to analyze performance ratio alone 

as a parameter to maximize performance at any given site. 

The performance ratio is in general independent of the irradiance 

conditions at a given site and is therefore a good indicator of the 

comparison of the performance of PV systems in different locations. PR 

can also be used to measure the behavior of a system over time (JORDAN 
and KURTZ, 2013; RUTHER et al., 2010a), also being regarded as a PV 

system design quality metric. 

The irradiance sensor for the measurement of performance ratio is 

usually a calibrated pyranometer. However, due to high costs of these 



 

 

116 

devices, it has become increasingly common to measure performance of 

PV systems with off-the-shelf, yet properly calibrated silicon sensors. 

Figure 58 summarizes the deviation in monthly totals from three 

irradiance sensors under monitoring at the SERIS meteorological station. 

The baseline, represented by the black line, is associated with the readings 

of a calibrated pyranometer (manufacturer: Kipp & Zonen, type: 

CMP11).  

Secondly, the orange circles are the deviation of a second 

pyranometer (manufacturer: Delta-T, type: SPN1), showing higher 

readings (average +1.4%) versus the baseline. This difference could be 

explained by the different sensor construction, with a dome type which 

includes a shading mask and internal unit algorithm running relationships 

between seven sets of thermopiles for the acquisition of the DHI reading. 

 

 

Figure 58: Three sensors measuring global horizontal irradiance under 

comparison. The CMP11 pyranometer acts as a baseline (source: SERIS). 

Thirdly, a silicon sensor (manufacturer: Mencke & Tegtmeyer, 

type: Si-02-PT100-K, calibrated at Fraunhofer ISE’s CalLab), shown as 

blue circles in the figure under discussion, has clear readings below a 

pyranometer (average -2.6% as recorded at the station for the period 

displayed). This is the case as the spectral response of silicon is narrower 

when compared with a pyranometer, as previously mentioned in 

subsection 2.2.2. Nevertheless, a silicon sensor can be calibrated to 

account for this issue. 

As seen in Figure 58 with the lower readings versus a pyranometer, 
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the fact that a silicon sensor behaves like a solar module (flat plate 

semiconductor), reflecting part of the light on its front glass (versus a 

pyranometer which absorbs most of the spectrum of the light from all 

angles through its glass dome, see Figure 33), it can be concluded that the 

performance ratio, when calculated based on readings from a 

pyranometer, will show lower values than for sites where irradiance 

recordings come from silicon sensors. 

Reich et al. (REICH et al., 2012) pointed out that there is a strong 

temperature dependence of the performance ratio since the energy 

produced by a PV system will be affected by module temperature. 

Therefore, PV systems in temperate zones will have a higher PR than 

comparable systems (with respect to module technology, inverters and 

level of ventilation) in tropical regions of the world. Nobre et al. 

(NOBRE, YE, et al., 2012) verified performance ratios in tropical 

Singapore with best PRs around 83% which are below those reported by 

Reich et al. as state-of-the-art systems in Germany (close to and 

approaching consistently the 90% mark, see Figure 59). This apparent ~6-

7% gap in performance between tropical- and temperate-zone located PV 

systems has been the topic of study of the author with published and under 

preparation works. 

 

 

Figure 59: Evolution of performance ratio in Germany through the past 2 

decades (REICH et al., 2012). 
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Another factor which can be observed in Figure 59 is that PV 

systems’ yields and performance ratios have evolved through the past two 

decades. One can clearly see the migration of performance ratios towards 

the upper 70s (of percentage points) and later towards the 80-90% band 

as time progressed. These improvements can be traced back to four major 

reasons namely: (1) advances in inverter efficiency and reliability, with 

units both reaching specification maximum efficiencies close to and 

slightly above 98%, versus low 90s circa 20 years ago. Additionally, 

inverters trip less in relation to its electric grid interactions today than 

earlier models, increasing overall system uptime; (2) solar module 

tolerances, with PV modules being segregated at the factory now with 

“plus-tolerances”, meaning if one acquires a 250 Wp module, the actual 

output of the module is 250 W plus a certain value (for example 5 W), 

versus 10-20 years ago when product tolerance would have been 250 W 

plus, but also minus 5 W; (3) overall improvement of balance of systems 

components (BOS) aligned with system integrators’ increased learning 

curves while making use of best practices of PV systems; and (4) 

advanced monitoring systems, many operating in real-time nowadays, 

which are now able to communicate system issues to owners upon 

occurrences, thus minimizing total system downtime. 

Apart from the IEC standards, the International Energy Agency 

published the Analytical Monitoring of Grid-connected Photovoltaic 

Systems: Good Practices for Monitoring and Performance Analysis  

which discuss state-of-the-art of monitoring, PV loss mechanisms which 

are only detected by research-grade systems, promote the understanding 

of long-term system behavior and finally to divulge lessons from bad 

performing systems (WOYTE et al., 2014).  

 

  



 

119 

2.5.2 Loss mechanisms of PV systems 

A performance ratio of 0.80 (or 80%) has historically been 

considered a good benchmark for a PV system in any location of the 

world. However, as reported by Reich et al., more recently installed solar 

systems in Germany have been performing at near 90% levels (REICH et 

al., 2012). 

The 10-20% losses which would be associated with a 90-80% PR 

PV system arise from a series of mechanisms which are described as 

follows: 

 

a) Solar irradiation in the module plane 

According to the location of a solar system in the world, together 

with its chosen tilt (inclination) and azimuth (orientation) angles, gains or 

losses in irradiance capture occur. 

Common system design practices suggest a tilt angle that matches 

the latitude of the site or is close to it (DGS, 2008). However, other 

considerations should be taken into account before a decision on 

installation angles are taken (see soiling losses).  
In terms of azimuth, Northern locations will profit most from 

systems facing South. Conversely, systems in the Southern hemisphere 

should face the North for energy capture maximization. 

For locations close to the Equator, which is the case of Singapore, 

it is possible that orientation towards North or South does not play such a 

major role, rather optimum performance is dictated by weather trends, for 

example concentration of rain showers in the afternoon would mean 

systems facing East will capture more sunlight and thus produce more 

electricity (KHOO, NOBRE, et al., 2014).  

Nonetheless, irradiation capture gains in the order of 10-15% could 

be achieved in a city like Freiburg, Germany (latitude = 48°N) by tilting 

a PV system to ~40° towards South. In low latitude locations, irradiation 

gains are little upon slight tilts. 

As solar is still a young contributor to energy mixes in the world, 

together with the fact that feed-in tariffs and other compensation schemes 

to solar PV are usually linked to fixed payment amounts, we have not 

reached a turning point when it might be interesting to maximize even the 

orientation of systems, thus generating more energy in the early morning 

or late afternoon portion of the day according to tariff variations. 

Orientation of systems could play a major role in a solar-dominated future 

where shift in demand might be desired (HUMMON et al., 2012). 
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b) External shading 

External shading can be caused by horizon obstructions, e.g. 

mountains and buildings, but also closer structures such as chimneys and 

trees. 

Although older methods exist, where one can draw obstructions 

with the use of a transparent paper, new and more modern options to 

evaluate losses for external shading are presently available such as 3D 

modeling (e.g. software Autodesk Ecotect, Google SketchUp) or with 

new tools normally with a fish-eye camera device at hand (e.g. SunEye 

tool, from company Solmetric (SOLMETRIC, 2013). 

Tropical locations have fewer problems with external shading due 

to high altitude angles of the sun in the sky. In Singapore, for example, 

the lowest sun angle throughout the year is ~65. Systems have shown to 

operate at high PR levels even when faced with challenging built-

environment surroundings (ZOMER et al., 2014). 

 
c) Internal shading 

Internal shading takes place when portions of the solar system 

itself cast a shade onto other system sections. Row-induced shading is an 

area of concern for MW-size power plants but also inherent to smaller 

systems which might be commissioned in several smaller sections due to 

space constraints that can end up shading one another. 

 

d) Soiling losses 

When PV modules get dirty from dust or biological sources (e.g. 

bird droppings), the amount of light reaching the photovoltaic elements 

will be reduced. Soiling losses are normally estimated at 1% (REICH et 

al., 2012) but are extremely location-dependent, e.g. would be higher in 

arid countries (H. QASEM, 2011). 

As discussed in loss mechanism a), if modules are installed at 

shallow angles (<10°) for maximization of solar resource for locations 

close to the Equator, that could be detrimental in terms of soiling 

accumulation as rain cannot exert a proper self-cleaning effect onto the 

modules’ glass front surface. Figure 60 shows progressive images taken 

of a PV system in Singapore installed at zero degree tilt angle (i.e. flat), 

thus completely foregoing the self-cleaning effect, which can be 

demonstrated by the considerable amount of dirt accumulation at the side 

of the modules, covering active PV cell areas. 
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Figure 60: Progression of soiling accumulation in an unmaintained PV 

system due to a flat tilt angle (source: SERIS).  

e) Reflections 

A PV module has a front-glass cover (in the majority of 

technologies). Although special glass types with increased light-trapping 

properties are present for most manufacturers, even such a special 

treatment surface will reflect part of the incident light. 

For this loss contributor, long-term experience from scientists have 

indicated deductions to be around 3% (HEYDENREICH, MÜLLER, et 

al., 2008). For a location near the Equator like Singapore, with higher 

solar elevation angles (as per Figure 32), the reflection losses tend to be 

lesser than compared to winter periods in a country like Germany, when 

the sun is low in the sky, thus causing greater loss of irradiation due to 

reflections. 

Khoo et al. also studied angular reflectance losses among the 

classical type of flat glass (planar) and a textured version special glass. 

The textured glass was measured to show 1.4% better light trapping 

capacity than the planar one after a 6-month testing period. Simulations 

year-round also showed better performance by the special glass type 

(KHOO, SINGH, et al., 2014). 
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f) Irradiation mismatch 

For the irradiation deviations from the standard test conditions 

(STC) value of 1,000 W/m2, Figure 42 shows for example how irradiance 

values throughout a year will vary at the 0-1,200 W/m2 range. Therefore, 

irradiance losses (or in this case under-, or for less instances over-

production, i.e. > 1,000 W/m2 conditions) will occur for every instance 

the conditions are not at the STC set-point. Software computes these 

deductions based on the input meteorological file for a location, which 

would inherently carry such irradiance statistics, thus allowing for loss 

estimations in the order of 3%. 

 

g) Spectrum mismatch 

For the spectral mismatch from the standard test conditions (STC) 

value of 1.5 AM, PV systems will be exposed to a different variation of 

air masses during the day due to sun path geometry but weather 

conditions. A common estimation for these losses is around 1%, also seen 

in Heydenreich et al. (HEYDENREICH, MÜLLER, et al., 2008) and 

Reich et al. (REICH et al., 2012). 

Ye et al. justified a red-shift spectrum in the tropical climate of 

Singapore as a reason for better performance of thin-film systems over 

silicon wafer-based ones (YE et al., 2014a). Liu et al. demonstrated that 

the red-shift is strongly reduced under hazy skies originated by forest fires 

in nearby Indonesia. Such contrary spectrum shift direction to the 

publication by Ye was shown to diminish performance ratios of thin-film 

systems under polluted skies (LIU et al., 2014b). 

 
h) Temperature dependency 

The single heaviest contributor to losses in the performance of PV 

systems is the module temperature. STC conditions are set at 25°C, which 

is far from the real-world operating environment systems face. Modules 

are usually 25-30°C hotter than the ambient temperature (ROSS, 1976). 

Module temperature losses are even more important in the tropics 

as reported by Ye et al., (YE et al., 2013) and Nobre et al. (NOBRE, YE, 

et al., 2012), see subsection 2.6.2. For silicon wafer-based technology, a 

typical value for the temperature coefficient loss for maximum power is 

0.4%/K.  
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i) Module and string mismatch 

Module mismatch in recent times is not such a considerable system 

loss contributor as it once was (REICH et al., 2012). With tighter 

tolerances from manufacturers, module sorting became non-

advantageous versus the time consumption needed due to bigger system 

sizes. Losses are constrained to values well below 1%. 

System strings going into the same inverter MPPT also require 

careful designing. With two strings, even with the same number of 

modules, but different tilt or orientation angles can cause string mismatch 

on the inverter MPPT, thus constraining the optimum operation 

conditions of that system section to the weakest link (with the worst I-V 

curve maximum power point tracking relationship), thus causing 

underperformance for the system as a whole (DGS, 2008). 

 

j) Ohmic losses 

DC-wiring losses are often restricted to assumptions in the order 

of 1.5% but can be calculated based on cable lengths and cross sections 

(DGS, 2008).  

For AC cabling losses, it is relative to the point of measurement of 

the AC energy being produced by the system. If the energy produced by 

the inverter is recorded by the inverter meter itself, AC ohmic losses could 

be assumed to be negligible. However, most utility energy meters are 

found at a certain distance from the inverter, mostly in separate 

distribution boards, thus creating a second section of ohmic losses, 

although small, until the final energy recording which later is used for 

performance ratio calculation. 

 

k) Inverter losses 

 Inverters have become more efficient with the growth of the 

photovoltaic market and subsequent technology advances. Some units 

(e.g. SMA 60 kVA transformerless series) can achieve up to 98.8% 

maximum efficiency (SMA, 2015b). 

 The selection of inverter to PV ratio has been discussed for many 

years now with a loading ratio of 1.25 commonly used as a threshold 

(DGS, 2008). Burger and Rüther investigated such ratios in relation to 

local solar resource (BURGER and RÜTHER, 2006). Cloud-

edge/enhancement effects, as discussed in subsection 2.3.2, could account 

for inverter cut-offs and loss of revenue in a PV system. 
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 The “Brazilian efficiency” concept for inverters was first proposed 

and investigated  in a master’s dissertation at Universidade de São Paulo, 

USP (PINTO, 2012). It bases the loading profile of the inverter similarly 

to what the European (EU) and California (CEC, California Energy 

Commission) efficiencies do for their respective regions. However, it 

takes into account the irradiance distribution profile for Brazil as a whole. 

Zomer et al started the first implementation of the Brazilian efficiency 

into software analysis of PV module performance assessment (ZOMER 
et al., 2013). 

 

l) Inverter transformer losses 

Since the inverters of all systems under study in this thesis are 

transformerless and not connected to any medium voltage level, 

transformer losses are considered to be zero. However, big size PV 

systems could receive energy meters at both the pre- and post- 

transformer positions, with revenue meters mostly located at the closest 

point to grid interfacing. 

2.5.3 Other factors influencing performance 

The following mechanisms are usually not part of PV systems 

simulation software. However, these contributors do affect performance 

and are most of the times rejected. They are discussed next: 

 

m) Wind speed 

Increased ventilation in the surroundings of a system brings 

module temperatures down, consequently increasing system power 

output (ROSS, 1976). 

Readings from the SERIS meteorological station (year 2011, see 

Figure 61) have shown lower average wind speeds of 1.4 m/s in 

Singapore, which motivated the foregoing of these sensors at PV system 

sites in local investigations. 
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Figure 61: Wind speed as recorded by the SERIS meteorological station for 

the year 2011 (SERIS, 2011). 

Veldhuis et al. validated PV power modeling in Singapore and 

Indonesia, with and without wind taken into account. Root mean square 

errors (RMSEs) between simplistic models adopted by Ye et al. (YE et 
al., 2013), not considering wind, versus more complex ones with wind 

influence, have shown small error variations and to work effectively in 

Singapore (VELDHUIS et al., 2013; VELDHUIS et al., 2015). 

 

n) System downtime 

 According to IEC standards on the performance assessment of PV 

systems (IEC, 1998), downtimes caused by various failures should be 

considered when assessing system quality. In its total life-cycle analysis, 

downtime affects LCOEs (BIERI et al., 2015). One of the most classical 

forms of downtime is an inverter trip, which again could happen for a 

variety of reasons, such as grid imbalances. Once inverters are down, the 

PV system goes into open-circuit voltage (VOC) and is not generating 

electrical energy any longer. Other examples of system breakdowns are 

burnt surge arrestors (due to lightning) or burnt fuses. Some examples of 

scheduled downtime are PV system maintenance or in some cases, 

monitoring system maintenance, which could affect recordings on site for 
irradiance and energy values being produced. 

 Investors usually take in their business plans an arbitrary value of 

1% deduction in overall system performance (i.e. usage of a 99% uptime) 

(BIERI et al., 2015). 
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o) Optical depth of local atmosphere 

Aerosols present in the air block sunlight from reaching the Earth’s 

surface. Optical depth (transmission of light from the top of the 

atmosphere down to the ground) is affected by, for example, air pollution.  

For Singapore, it is somewhat common that forest fires in nearby 

Indonesia set smoke clouds in the region, especially during the months of 

August and September (driest periods of the year when fires are used for 

agriculture clearing), see 2.3.3. The example of haze influence on an 

irradiance sensor and on a PV system is shown in Figure 62, with the clear 

sky irradiance and theoretical maximum power indicated. 

 

 

Figure 62: Irradiation on ground level and yield of a PV system on both a 

clear sky day (PSI = 54) and on a hazy day (PSI = 109) (NOBRE et al., 2015 

(accepted)). 
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Figure 62 (top row) shows the in-plane global irradiance of a PV 

system on a relatively clear sky day in June 2014 (with a 24-hour 

Pollution Standards Index, PSI average of 54) compared against the time 

series on a hazy, yet cloudless day in June 2013 (24-hour PSI = 109). A 

reduction of approximately 14% in irradiation is shown for the 

comparison of those two days. When performing the same check on the 

normalized AC power output of a PV system for the same two days, the 

reduction in electricity production follows a similar pattern (~13% 

reduction, Figure 62, bottom row). While there is a clear visual effect on 

the dimming of the irradiation at ground level on this exceptional day 

(hazy but cloudless), the quantification of the haze effect is a challenging 

exercise for typical day to day conditions, when clouds are likely to be 

present in the tropical climate of Singapore. Determining the weather 

conditions with and without the presence of the haze and how that affects 

existing PV systems in Singapore is a complex exercise. 

Burning of biomass is also present in Brazil and could affect 

aerosol particle concentration (MARTINS et al., 2008). Although great 

forest reserves are farther apart from big centers, it is highly possible that 

with the deployment of larger volumes of PV systems, some of these 

installations in the future end by suffering loss of power due to nearby 

fire particulate emissions, or even in some cases, industrial pollution 

emissions. Major city-centers like São Paulo pose similar challenges in 

terms of hazy skies as shown in Figure 62. However, the smog in this case 

is caused mostly by automobile exhaust as well as potentially, to some 

level, by industrial emissions.  

 

p) PV system degradation 

PV systems do degrade with time. A combination of soiling 

accumulation which might not be entirely removable, increase in series 

resistance in aging solar cells, module delamination, front glass 

“yellowing” caused by extended UV-exposure, among other factors could 

trigger an ageing mechanism to PV modules and consequently to systems. 

NREL has studied more than 4,000 research results throughout the world 

(JORDAN and KURTZ, 2013) and has summarized their finds to 

degradation rates of an average of -0.5% per annum, which is also a 

widely utilized figure both from module manufacturers perspective (when 

planning their warranties) but also from investors (when conducting their 

business plans). A recent study, however, showed an average degradation 

of -0.8% per annum of a 20-year-old PV system in Colorado, United 

States (JORDAN et al., 2015). Another study in a subtropical island in 
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the south of Brazil showed an average output reduction of -0.55% per year 

for a thin-film amorphous silicon PV installation over a 15-year period 

(DO NASCIMENTO and RUTHER, 2014). 

In a constantly hot and humid climate, these numbers have been 

demonstrated to be higher. Degradation on single piece PV modules was 

assessed by Ye et al. in Singapore with annual rates ranging from -0.8% 

to -6.0% depending on the module technology (YE et al., 2014b). On a 

system level, Nobre et al. reported median annual degradation rates of -

1.2% for crystalline-based systems in Singapore (NOBRE et al., 2013).  

One way to monitor system degradation is via long-term PR 

assessment as shown by Rüther et al. (RUTHER et al., 2010a) and Kiefer 

et al. (K. KIEFER, 2010). A novel method was proposed by the author of 

this thesis where both DC and AC sides of PV systems were investigated, 

with continuous daily performance ratio readings, which later receive a 

statistical treatment, whereby a 2-sigma filter is applied to remove values 

of performance which are not associated with the customary behavior of 

the PV system. Figure 63 displays one of the example analysis conducted, 

with degradation assessment both on the DC- and AC-sides of a PV 

system. In this example, the system’s DC-side, e.g. solar modules and 

cabling all the way to the inverter’s input, has shown degradation through 

~1,100 days of approximately -0.6% per annum (dark blue circles, daily 

PR values). The light blue circles represent daily PR values on the AC-

side of the system, taking the entire ensemble into account, all the way to 

the final energy meter. For the PV system shown, an AC-side degradation 

of -0.8% was found. 

In the investigation as a whole, results have shown median 

degradation rates above current literature values (-0.5% p.a. for AC-side 

degradation) for both silicon crystalline wafer-based and silicon thin-film 

technologies (-0.7% p.a. for DC- and -1.5% p.a. for AC-sides of silicon 

wafer-based systems and -1.2% p.a. (DC) and -1.6% p.a. (AC) for silicon 

thin-film based systems). While these conclusions are limited by the 

number of years for which data are available, for the first 1.5 to 3 years 

of operation, there is no trend that the degradation would slow down with 

time thus far. More investigations were performed and addressed in 

publications and results and discussions section of this thesis. 
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Figure 63: Degradation of a PV system in Singapore after ~1,100 days of 

operation (NOBRE et al., 2013). 

2.5.4 PV system performance in warm climates 

With more and more large photovoltaic (PV) markets emerging in 

hot and humid tropical areas, PV systems are to be specifically designed 

in line with the local conditions to ensure optimized performance. Newly-

installed systems in Germany, the country currently with the largest 

installed capacity worldwide, have improved their performance ratios 

(PR) from the 50-75% range in the late 80s to close to 90% for state-of-

the-art systems in recent times (REICH et al., 2012) and shown in 2.5.1. 

It is only natural that most of the research on PV topics has been 

focused where booming markets are. In the area of PV systems, isolated 

efforts have taken place for PV systems in the tropics (FAN, 2007; 

RUTHER et al., 2010a; b; WITTKOPF et al., 2012).  

A more comprehensive investigation has shown a performance 

ratio median close to 80% for crystalline wafer-based PV systems in 

tropical Singapore (NOBRE, YE, et al., 2012). In the work, the 

performance ratios of 11 silicon wafer-based systems for the one-year 

measurement period were shown (Figure 64). The best-in-class system 

(A) operated with a PR of 82.6% and the worst-performing system (K) 

delivered only a PR of 58.1%. Typical system flaws leading to lower 

performance include for example: unreliable components (modules, 
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inverters failures), wrong selection of cable sizes, a faulty AC switch 

frequently causing electrical trips, or burnt fuses. 

 

 

Figure 64: Performance ratio of 11 crystalline wafer-based systems in 

Singapore (NOBRE, YE, et al., 2012). 

 At the time of the investigation on the previously mentioned work, 

those systems represented approximately 20% of the entire PV installed 

capacity in Singapore (~4 MWp). This shows that it is not uncommon to 

observe PR values of 80-82%, despite the harsh tropical climate 

conditions found – annual ambient temperatures between 23-35°C and 

relative humidity levels between 60-85% (NEA, 2009), with low 

seasonality effects for the country. 

With the Fraunhofer Institute for Solar Energy Systems (ISE) 

demonstrating that state-of-the-art photovoltaic systems in Germany have 

reached the 90% performance ratio mark (REICH et al., 2012), the 

investigation for similar results for a tropical location were set for the 
understanding of PR behavior in such harsh environments. Module 

temperature was found to contribute between 45-60% of all losses from 

PV systems in Singapore. As module temperature is the most influential 

parameter, a subsequent publication under preparation aims to tackle the 
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reasons for the delta in PRs between temperate and tropical locations. 

Figure 65 gives an indication of the reasons behind the effects, with 

module temperature in Singapore in general much hotter than in 

Germany. State-of-the-art PV systems in Singapore can operate today at 

~85% PRs whereas European systems can reach up to 90%, as previously 

presented. 

 

 

Figure 65: The monthly spectrum of variation in the PR losses between a PV 

system in Singapore and one in Germany (NOBRE et al., 2015 (in 

preparation)). 
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2.5.5 National Solar Repository of Singapore 

The National Solar Repository of Singapore (NSR) was officially 

launched in November 2010, part of the local government initiative 

through its Economic Development Board (EDB) to promote solar 

photovoltaics in the country. The repository works as a database and 

information portal for relevant stakeholders in solar photovoltaics in 

Singapore (NSR, 2013a). 

The repository has a three-fold goal: 

 

 Create awareness about existing photovoltaic installations in 

Singapore, generating enthusiasm with the population about this 

form of clean energy technology; 

 

 Help optimize performance of solar PV installations in Singapore 

by comparing and analyzing system behavior on a monthly and 

annual basis, setting country-wide benchmarks for system 

technology; 
 

 Act as the information platform in the country for solar PV basics 

or whom to contact for installation financing of a solar system. 

The NSR contains information on several types of PV systems 

such as the ones shown in Figure 66. PV installations in commercial 

buildings (left) are monitored for their output on a monthly basis, together 

with industrial sites (top right), residential systems (middle right) and 

educational or research systems (bottom right). Some of the systems 

provide daily output records, which allow for more detailed investigations 

by the initiative.  

As of late 2014, the NSR platform tracked one fourth of the PV 

systems available in Singapore (in terms of volume, circa 9 MWp out of 

a total of 33 MWp deployed in the country). Photos of the systems and 

their locations are shown in a map, as well as the system characteristics 

in a database. 

 Perhaps most importantly is the information the initiative provides 

on system performance. Figure 67 is a summary of systems’ annual yields 

(MWh/kWp per year) for the year 2013. The results account for systems’ 

failures in the field, e.g. inverter downtime and are thus not adjusted for 

only optimum performance values. The average of 1.08 MWh/kWp for 56 

systems in the country (approximately one third of the entire installed 

capacity of solar PV in Singapore at the time of the analysis) highlights 
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the current state-of-the-art for the country in PV system technology (NSR, 

2013b). The average irradiation as measured by several SERIS 

meteorological stations indicated an annual value for GHI of 1,578 

kWh/m2, which allows the inference that the average system performance 

ratio in Singapore is just under 70%, a value which is far from what state-

of-the-art PV systems can ultimately deliver today, thus, an indication that 

system design and implementation is not optimum in the country. 

 

 

Figure 66: NSR PV system category examples – commercial, industrial, 

residential and educational systems are categorized in the database (NSR, 

2013c). 

The solar resource as assessed by the SERIS meteorological station 

is perhaps the most reliable reading of solar irradiance in the country for 

PV applications, with highest data availability (above 99.5% of data 

collected) and optimum data reliability (weekly cleaning of sensors and 

tight maintenance practices). The average daily global horizontal 

irradiance recorded over the same 2.5 years was 4.32 kWh/m2 per day, 

which would represent a meteorological year average of 1,577 kWh/m2, 

-3.3% versus long-term TMY for Singapore as portrayed in subsection 

2.3.2. All in all, with shallow installation tilt angles, it could be assumed 
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that this average output for 43 installations has a performance ratio of 

approximately 72%. As demonstrated in the previous subsection, a 

research median of ~80% had been validated, an 8% gap versus the 

country’s benchmark. This highlights that there is considerable room for 

improvement for PV systems performance throughout the island as new 

installations come online.  

 

 

Figure 67: NSR 2013 benchmarking results for PV systems in Singapore 

(NSR, 2015d). 
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2.6 PV SYSTEMS MODELING 

2.6.1 Available tools 

One of the most used commercially available software for PV 

system modeling is PVSYST (PVSYST, 2013). Most system integrators 

use this tool for system design, performance assessment and DC electrical 

range checks such as for operational voltages and currents of module 

strings. 

Another software commonly used is PV*SOL, from the Solar 

Design Company (PV*SOL, 2013). 

As an example of other software, for its CERP-02 research project 

on PV systems performance in the tropics, SERIS used the PV systems 

modeling software “Zenit”, from the Fraunhofer Institute for Solar 

Energy Systems (ISE). The in-house built software is a compendium of 

two decades of experience of the German institute in PV systems yield 

and performance assessment. 

2.6.2 Existing research in PV systems modeling 

Heydenreich et al. (HEYDENREICH, MUELLER, et al., 2008) 

tested a PV power model using three parameters (a, b, c) to characterize 

the efficiency curves of PV devices. The authors applied flash testing to 

several crystalline silicon modules in order to empirically test the 

appropriate three parameters intended. The formula for the model 

follows:  

 

η𝑚𝑝𝑝,25(𝐺𝑚𝑜𝑑) = 𝑎𝐺𝑚𝑜𝑑 + 𝑏 ln(𝐺𝑚𝑜𝑑 + 1) + 𝑐 [𝑙𝑛2 (𝐺𝑚𝑜𝑑+𝑒)

(𝐺𝑚𝑜𝑑+1)
− 1]  (9) 

 

where ηmpp,25 is the efficiency of the PV module at 25°C at its maximum 

power point (MPP) efficiency, Gmod is the irradiance on the plane of the 

array, and a, b, c the model values derived empirically in the study. 

Continuing, Equation 9 yields the module MPP efficiency only at the 

condition of device temperature at 25°C. For the efficiency adjustment at 

other temperature ranges, Equation 10 should be applied: 

 

η𝑚𝑝𝑝,25(𝐺𝑚𝑜𝑑 , 𝑇𝑚𝑜𝑑) = η𝑚𝑝𝑝,25(𝐺𝑚𝑜𝑑)[1 + 𝛼(𝑇𝑚𝑜𝑑 − 25°)]   (10) 

 

where ηmpp is the efficiency of the photovoltaic device at a given 

temperature, Tmod is the module temperature and α is the temperature 

coefficient of the MPP power. A common value for α in crystalline silicon 
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modules is -0.0045°C-1, as found in the specifications of the majority of 

PV panels. In order to estimate module temperatures, the following 

Equation is valid, for the condition of no wind, which is often the case in 

Singapore: 

 

𝑇𝑚𝑜𝑑 = 𝑇𝑎𝑚𝑏 + 𝛾𝐺𝑚𝑜𝑑       (11) 

 

where Tamb is the ambient temperature, with γ commonly referred to as 

the Ross coefficient, dependent on installation mounting type (ROSS, 

1976). A typical value used for γ is 0.020°Cm2W-1 for ground-mounted 

installations with good ventilation. 

State-of-the-art PV systems in Germany started to achieve close to 

90% performance ratios, with temperature-related losses accounting for 

~20% and ~45% of the total system losses for winter and summer months, 

respectively (REICH et al., 2012). A recent study on PV simulation using 

29 PV systems in Spain and predominantly in Germany showed 

differences in yield estimations and actual field output due primarily to 

solar brightening (the irradiation databases, based on past decades 

records, present lower annual irradiation levels than recent records). The 

combined uncertainty of yield predictions today lies at 8%, as shown in 

Müller et al. (MÜLLER et al., 2015).   

After using numerical weather prediction forecasts for the entire 

Europe zone, Lorenz et al. (LORENZ et al., 2011) have performed an up-

scaling routine for PV systems in Germany using a baseline of 

representative installations in order to predict future system output for the 

many thousands of other systems in the country. Input parameters were 

forecasted irradiance up to two days ahead in hourly resolutions, achieved 

by the numerical model prediction, with ambient temperature playing a 

role in determining module temperature (as per Equation 11) taking into 

account a number of assumptions.  

As an example in Asia, researchers conducted a comprehensive 

investigation on power forecast for day-ahead applications in more than 

700 PV systems in Japan (FONSECA_JR. et al., 2013). The study found 

that for systems tilted above 40 degrees, higher forecast errors were 

identified in the modeling.  

2.6.3 Challenges of modeling in tropical conditions 

With a research-grade software which had been previously and 

extensively validated in a temperate location of the world 

(HEYDENREICH, MÜLLER, et al., 2008; REICH et al., 2012), the 
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software from Fraunhofer ISE was further put to test at a different climatic 

condition in the world in tropical Singapore.  

Detailed loss mechanisms are shown as two-bar clusters (see 

Figure 68, with measured (left bars) and simulated (right bars) values of 

11 silicon wafer-based PV systems under monitoring in Singapore. 

Simulation of systems A through F were within ±2% of the actual 

measured results, while PV systems G through K experienced technical 

faults during operation, causing larger deviations of the measured values 

from the "ideal behavior", which is the outcome of the simulation 

software. 

Simulations were performed with the software “Zenit”, developed 

by Fraunhofer ISE and adjusted by SERIS for the local irradiance and 

temperature conditions in the tropics. The irradiance data inserted into the 

simulation is the same as read by the silicon sensors on site, hence soiling 

and reflection losses are not computed, assuming that the same conditions 

experienced by the silicon sensors will prevail also at the PV systems 

(since both are of similar materials and installed at the same inclination 

angles) and, for Singapore, kept uncleaned.  

 

 

Figure 68: Simulated versus measured loss mechanisms of 11 PV systems in 

Singapore (NOBRE, YE, et al., 2012). 

Analyzing systems A through F, it can be seen that the largest 

difference between measured and simulated results was 1.7% for system 

A, which is in line with previous publications that reported uncertainties 

in the ±2.0% range (REICH et al., 2012). For the subsequent systems G 
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through K, individual explanations were given to their sub-optimum 

operational (measured) behavior (NOBRE, YE, et al., 2012). 

Zomer et al. used Zenit for simulations of PV systems in Brazilian 

airports (ZOMER et al., 2013), as well as taking the “Brazilian 

Efficiency” for inverters (PINTO, 2012) into account. 

Ye et al. showed that module temperatures in the field in Singapore 

can reach almost a 3-fold variation from coolest to hottest systems (see 

Figure 69). The scatter of the temperature differences were explained 

qualitatively in the publication as being caused by four major factors: (1) 

roof top material, usually made of concrete or metal; (2) module-to-

ground separation, from a few centimeters all the way to more than 1 m 

gap; (3) whether modules are framed or frameless, with the framed ones 

presenting an extra barrier for natural ventilation flow; and (4) other 

environmental aspects, such as being close to a nature reserve, as opposed 

to being located in a highly-dense environment and subjected to “urban 

heat islands” (YE et al., 2013). 

 

 

Figure 69: Module and ambient temperature variations with irradiance for 

17 PV systems in Singapore (YE et al., 2013). 

Nobre et al. have demonstrated that this model is valid for a 

different tropical location around the world. Three PV systems in Brazil 

were used within the calculation methodology which had been previously 

proposed for Singapore (NOBRE, MONTENEGRO, et al., 2012).  
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3. METHOD 

 

3.1 PRELIMINARY REMARKS 

3.1.1 R&D supporting infrastructure and overview 

This thesis had the goal of advancing knowledge on short-term 

solar irradiance forecasting in tropical regions of the world, together with 

adding further value by including actual power output know-how gained 

from already deployed PV systems in preparation for a future with a 

considerable share of renewables in electricity matrices. 

Research data collection within past R&D projects in Singapore 

started in 2009 for PV systems and weather parameters alike. With the 

accumulation of historical data from these projects, plus the addition of 

new meteorological stations and PV installations to the country’s 

network, past and present datasets allowed and continue to allow new 

findings in solar resource forecasting and systems behavior for the 

tropics. 

As stated in the objectives, enhancements to solar irradiance 

forecasting on short time scales (such as 15-min, 30-min and 1-hr forecast 

horizons) were covered first. After obtaining irradiance values ahead of 

time, PV systems performance was taken into account, both by 

understanding loss mechanisms in PV systems as well as their long-term 

operational behavior, trying to minimize errors throughout the processes. 

Sources of data enabling the investigation towards its main and 

specific goals stem from research projects from the Solar Energy 

Research Institute of Singapore (SERIS), namely: 

 

 Irradiance and general meteorological data arising from the 

Clean Energy Research Program (CERP-04 project call) – 

“Novel monitoring and control unit for enhanced availability and 

reliability of solar PV systems – optimization of photovoltaic 

electricity generation in tropical power grids through radiation 

forecasting and system monitoring”, a 3-year long research 

project managed by SERIS, which took place between 2011 and 

2014; 

 

 PV systems operational data from the CERP-02 project call – 

“High performance PV systems for tropical regions – 

optimization of system performance”, a 3-year long research 

project, also managed by SERIS, between 2009 and 2012; 
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 PV systems monthly energy output data (for some sites, daily) 

from the National Solar Repository of Singapore (NSR) 

initiative, an ongoing research activity led by SERIS, which 

allows for country-wide up-scaling exercises. 

 

Although the CERP-02 and -04 projects were officially completed, 

the data acquisition is still ongoing, which allows for further weather 

knowledge gains and long-term PV system behavior studies. 

This thesis focuses on irradiance forecasting at short-term intervals 

together with a full PV power conversion routine validation of the 

predicted results towards PV system performance assessment ahead of 

time. In a sense, an “irradiance-to-kWh” chain of events but taking place 

before the electricity is actually produced. Figure 70 illustrates and 

summarizes the work intended, with inputs for proposed forecasts 

powered by algorithms using from meteorological parameters, as well as 

data from PV systems readily available for method validation. 

 

 

Figure 70: Illustration of proposed method: “Irradiance-to-kWh” 

simulation and validation (adapted for this thesis). 

The network of ground-irradiance sensors deployed in Singapore 
is one of the densest in the world. It is also easy to maintain due primarily 

to the proximity of stations to the SERIS building (longest distance which 

the team needs to commute for access is ~35 km). 

Existing stochastic and artificial intelligence methods are explored 

for short-term irradiance forecasting. The performances of the methods 
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are compared to determine which are more suitable for this region of the 

world. Additionally, a novel Hybrid model is introduced in an attempt to 

curtail prediction errors. 

Empirical data of the thesis comes from a fine-grid area of ground-

based stations measuring global horizontal irradiance as well as other 

meteorological parameters. The network of 25 ground-measurement 

stations was completed in November 2013. The PV sites used for power 

conversion modeling were first deployed in January 2010, with fifteen 

sites at the completion of this thesis accounting for ~1 MWp of PV 

systems of various sizes, technologies and tilt & azimuth angles. 
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3.1.2 Boundary conditions of the investigations 

Forecasting irradiance for photovoltaic applications means 

essentially predicting the global horizontal irradiation (GHI) at future 

time steps. The thesis is centered on a short-term application setting. 

Challenges do exist in modeling irradiance on the plane of the array 

of a PV system, and later photovoltaic energy generation (kWh), at lower 

irradiance values (< 100 W/m2) due mainly to: 

 

i. Complex shading onto irradiance devices due to external 

nearby structures (buildings, trees), as well as horizon shading 

from a heavily-urbanized environment as the one found in 

Singapore; 

 

ii. Precision of irradiance measurement devices (especially silicon 

sensors) at very steep solar elevations angles, which take place 

in early mornings and late afternoons; 

 

Moreover, electricity demand peaks usually occur between 10 am 

and 5 pm for Singapore (see Figure 8) as well as the majority of the 

electricity production from solar PV systems (see Figure 42, with most of 

the irradiance values falling within the 300-900 W/m2 range). Therefore, 

the algorithms and tests within this thesis focus on an 8-hour window of 

interest – ranging from 9 am to 5 pm – on a daily basis.  

Validation of the proposed and under scrutiny methods is achieved 

through data from ~1 MWp worth of PV systems from an existing 

portfolio (~3% of the installed capacity of the country as of December 

2014). Up-scaling is later investigated thanks to data from the National 

Solar Repository of Singapore (NSR), with ~9 MWp of systems (~1/4 of 

the installations in the country in volume terms). Up-scaling is later 

described in subsection 3.4.4.  

For the forecasting windows, the shortest interval is set for 15-min, 

with a second interval selected for 30-min, matching dispatch cycle of 

electricity trading in Singapore (EMA, 2013). A further horizon window 

of 1-hr is also put to test. 
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3.2 SOURCES OF DATA 

3.2.1 Ground-measured irradiance data 

This thesis focuses on solar irradiance forecasting for the location 

Singapore together with power conversion for PV applications. Figure 71 

shows the ground-based meteorological station network deployed by 

SERIS throughout the island as part of the research project “CERP-04”. 

In order to obtain the ground measurement readings at a good 

spatial resolution, 25 stations of the project were distributed across 

Singapore using a 5x5 km grid as reference, trying to achieve the best 

distribution possible. Some locations are off-bound military zones or 

protected tropical rain forests or reservoirs, which prevented a more 

uniform distribution of the meteorological stations. 

 

Figure 71: Singapore’s 25 ground-based stations of the CERP-04 research 

(adapted for this thesis). 

The original CERP-04 network of stations is composed of eight 

stations which are called “superstations”, with the remaining seventeen 

named “basic stations”. The difference between these stations lies on the 

variety of meteorological sensors installed in each of them. A superstation 

has two readings of global horizontal irradiance (GHI), one with a 

calibrated silicon sensor (manufacturer: Mencke & Tegtmeyer, Germany) 

and one with an SPN1 pyranometer (manufacturer: Delta-T, United 

Kingdom). The SPN1 pyranometer also measures the diffuse irradiance 

via an internal algorithm and readings from seven small thermopiles, with 
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a shadow mask mounted inside its glass dome. Other sensors available at 

a superstation are ambient temperature, relative humidity, wind speed, 

wind direction and finally an air pressure sensor. A basic station, on the 

other hand, is a small setup and has only the calibrated silicon sensor, 

ambient temperature and relative humidity sensors. Such selection of 

sensors guaranteed that all 25 stations of the network had a “common 

denominator”, that is, three key readings which are crucial for irradiance 

mapping and forecasting, as well as necessary inputs for PV systems 

simulation, when needed. A basic and a superstation can be seen in Figure 

72. 
  

 

Figure 72: Basic meteorological station #425 (left) and superstation #408 

(right, wind sensors not pictured) (source: SERIS). 

 The sensors deployed at super and basic stations of the island-wide 

network are described in Table 9. The three sensors present in all stations 

(common denominators) for the entire island are marked in red. The 

superstation sensors are further described in the table (marked in blue), 

together with all associated uncertainties of these devices. 

Due to the high costs of a superstation, only a certain number of 

them were deployed arising from project budget constraints. The goal 

therefore was to disperse them in a way that they cover strategic points of 

the island, with special attention in putting several of these stations on the 
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outskirts of Singapore, with such a strategy later leveraged and discussed 

in subsection 3.3.2. 

Table 9: Measurement uncertainties of super and basic stations of the 

network (source: adapted from sensor manufacturers). 

Parameter Description/ 

Device 

Manufacturer/

Model 

Uncertainty Super/

Basic 

GHISi Global horizontal 

irradiance/ 

silicon sensor 

Mencke & 

Tegtmeyer/ 

Si-02-PT100-K 

±2.0% lab4, 

±5.0% field 
Basic 

Tamb Ambient 

temperature/ 

PT100 probe 

 

Thies Clima/ 

PT100, Class B 

±0.2 K Basic 

Hamb Relative humidity/ 

capacitive element 

Thies Clima/ 

1.1005.54.000 

±2.0% Basic 

GHISPN1 Global horizontal 

irradiance/ 

pyranometer 

Delta-T/ 

Sunshine 

pyranometer 

±5.0% Super 

DHISPN1 Diffuse horizontal 

irradiance/ 

pyranometer 

Delta-T/ 

Sunshine 

pyranometer 

±5.0% Super 

WS Wind speed/ 

cup anemometer 

Thies Clima/ 

4.3519.00.141 

±0.5% Super 

WD Wind direction/ 

wind vane 

Thies Clima/ 

4.3129.60.141 

±2° Super 

AirP Air pressure/ 

barometer 

Thies Clima/ 

B-278-1T 

±0.3 hPa at 

20°C 
Super 

 

Table 10 describes each station in terms of district location in 

Singapore, its global positioning system (GPS) coordinates and altitude. 

All GPS coordinates were acquired with a Garmin Forerunner 310XT 

GPS watch, with a stated precision according to satellite signal strength 

at the moment of recording of ±10 m. 

 

 

 

                                                        
4 All silicon sensors of the SERIS research projects are calibrated either at the Fraunhofer Institute for Solar 

Energy Systems’ (ISE) CalLab or at the National Metrology Centre in Singapore (NMC) at highest accuracy 

levels available for research applications. Based on previous experience of ISE, silicon sensors are exchanged 

in the field after a period of two years of exposure, which is performed even after the R&D project completion. 

All other sensors have calibrated certificates from their respective manufacturers and are safe to use upon 

failure. 
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Table 10: Basic characteristics of 25 ground-measuring meteorological 

stations in Singapore (adapted for this thesis). 

ID 

# 

Station 

Name 

District in 

Singapore 

Latitude 

[N] 

Longitude 

[E] 

Altitude 

[m] 

Date 

Deployed 

S1 401 Punggol 1°23’58” 103°54’33” 54 Oct/12 

S2 402 Clementi 1°18’02” 103°46’16” 63 Jul/11 

S3 403 Woodlands 1°26’38” 103°47’03” 45 Apr/12 

S4 404 Sentosa 1°14’57” 103°50’29” 36 May/12 

S5 405 Changi 1°21’10” 103°57’55” 45 May/12 

S6 406 Lim Chu Kang 1°26’45” 103°42’39” 57 Jan/13 

S7 407 Marine Parade 1°18’09” 103°54’44” 26 Nov/12 

S8 408 Boon Lay 1°21’18” 103°41’33” 57 May12 

B9 409 Bishan 1°20’52” 103°50’29” 52 Feb/13 

B10 410 Tuas 1°16’26” 103°37’21” 60 Jun/13 

B11 411 Tuas 1°17’55” 103°38’25” 26 Dec/11 

B12 412 Bukit Timah 1°20’00” 103°46’22” 50 May/12 

B13 413 Bukit Timah 1°20’43” 103°47’30” 55 Oct/12 

B14 414 Sembawang 1°27’11” 103°49’15” 60 Jan/12 

B15 415 Bukit Batok 1°21’43” 103°44’40” 53 Nov/12 

B16 416 Bukit Panjang 1°23’23” 103°46’23” 60 Jul/13 

B17 417 Clementi 1°18’09” 103°46’22” 26 Apr/13 

B18 418 Clementi 1°18’24” 103°46’23” 44 May/13 

B19 419 Hougang 1°21’08” 103°55’22” 51 Nov/12 

B20 420 Lavender 1°18’34” 103°51’42” 50 Sep/13 

B21 421 Redhill 1°17’21” 103°49’01” 55 Jul/13 

B22 422 CBD 1°16’59” 103°51’07” 99 Nov/13 

B23 423 Dover 1°18’40” 103°46’32” 57 Jul/13 

B24 424 Frankel 1°18’54” 103°54’55” 20 Apr/13 

B25 425 Lower Seletar 1°24’35” 103°56’51” 10 Aug/13 
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3.2.2 Operational data of PV systems  

Via its CERP-02 research project “High Performance PV Systems 

for Tropical Regions – Optimization of System Performance”, SERIS 

deployed close to 1 MWp worth of PV systems monitoring setups (spread 

over fifteen sites, see Figure 73, and accounting for a total of 33 sub-

systems, see Table 11. Site selection, which took place in 2009, was based 

on the maximum possible diversity of PV systems in Singapore available 

at that instant in time, in terms of geographic spread around the island, 

variety of PV technologies (monocrystalline, multicrystalline and thin-

film based), system sizes (ranging from a couple of kWp all the way to 

the biggest site of ~230 kWp), and commissioned by different system 

integrators. 

 

 

Figure 73: Location of 15 PV sites from the SERIS CERP-02 research in 

Singapore (adapted for this thesis). 

From Table 11, showing the basic sub-systems’ characteristics, it 

can be attested that even though Singapore is located at 1ºN of the 

Equator, theoretically calling for a flat installation for maximum 

irradiance harvesting, the preferred installation tilt angle is approximately 

10º, which facilitates the “self-cleaning effect” of the modules through 

rain. The proximity to the Equator allows for no predominant azimuth, 

with most PV systems following the building geometry. However, as 

shown in Figure 35, it has been previously investigated that the best tilt 

and orientation angles for PV systems in Singapore are ~10º and ~90º 

East-facing, respectively (KHOO, NOBRE, et al., 2014). 
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Table 11: Basic information for 33 PV sub-systems under monitoring at 15 

sites via the SERIS’ CERP-02 research project (adapted for this thesis). 

PV 

# 

Technology Size 

[kWp] 

Tilt 

[°] 

Azimuth 

[0-360°] 

District in 

Singapore 

101a a-Si 4.9 12 50 NE Sentosa 

102a p-Si 5.2 11 10 N Clementi 

103a m-Si 4.8 15 200 SW Dover 

104a p-Si 15.0 6 220 SW Woodlands 

105a m-Si 10.4 7 205 SW Sembawang 

106a p-Si 13.5 6 130 SE Tuas 

106b p-Si 167.4 10~16 130 SE Tuas 

107a p-Si 60.8 10 10 N Tuas 

107b p-Si 91.1 10 190 S Tuas 

108a p-Si 3.8 flat - Bukit Timah 

109a a-Si 5.1 10 220 SW Bishan 

110a a-Si 162.7 5 340 N Changi 

111a a-Si 4.8 19 70 NE Frankel 

111b µc-Si 3.8 6 250 SW Frankel 

112a m-Si 2.1 10 0 N Clementi 

112b p-Si 2.0 10 0 N Clementi 

112c a-Si 2.1 10 0 N Clementi 

113a HIT 6.3 10 200 SW Clementi 

113b a-Si 4.0 10 200 SW Clementi 

113c p-Si 5.6 10 200 SW Clementi 

113d p-Si 4.6 10 200 SW Clementi 

113e p-Si 4.6 10 200 SW Clementi 

114a p-Si 19.7 10 0 N Boon Lay 

114b p-Si 19.7 10 180 S Boon Lay 

114c p-Si 19.7 10 90 E Boon Lay 

114d p-Si 19.7 10 270 W Boon Lay 

114e p-Si 42.1 10 0 N/180 S Boon Lay 

114f p-Si 95.9 10 0 N Boon Lay 

114g p-Si 14.1 10 0 N/180 S Boon Lay 

115a m-Si 43.2 8 110 SE Yishun 

115b p-Si 37.4 8 110 SE Yishun 

115c a-Si 42.0 8 110 SE Yishun 

115d m-Si 14.5 3 20 N Yishun 

 TOTAL 952.8    

 

All SERIS monitoring systems record the investigated parameters 

as one minute averages, with a sampling rate of 1 Hz. All measurements 

are performed with identical sensors, under same calibration routines, 

thus guaranteeing a reliable comparison between sites. 

For the PV systems monitoring setups, the sensors deployed in the 

field and their uncertainties are summarized in Table 12. Silicon sensors 
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carry a laboratory accuracy of ±2%, as previously reported. Other 

uncertainties of the monitoring system are based on sensor 

manufacturer’s specifications. 

Table 12: Measurement uncertainties of the PV system monitoring setup of 

CERP-02 sites (source: adapted from sensor manufacturers). 

Parameter Description/Device Manufacturer/Model Uncertainty 

Gmod In-plane irradiance/ 

silicon sensor 

Mencke & Tegtmeyer/ 

Si-02-PT100-K 

±2.0% lab, 

±5.0% field 

Tamb Ambient temperature/ 

PT100 probe 

Thies Clima/ 

PT100, Class B 

±0.2 K 

Tmod Module temperature/ 

PT100 probe behind 

panel 

Thies Clima/ 

PT100, Class B 

±0.2 K 

PAC AC power/ 

analogue, with current 

transducers 

Ziegler & Müller/ 

EDM-400 

±0.5% 

EAC AC energy/ 

integrator meters, 

with pulses 

Ziegler & Müller/ 

EDM-400 

±1.0% 

IDC DC current/ 

shunts 

Ziegler & Müller/ 

10-20 A shunts 

±0.2% 

VDC DC voltage/ 

voltage transducers 

Ziegler & Müller/ 

300-600 V transducers 

±0.5% 

 

 All PV systems investigated have DC strings under monitoring, as 

well as the site’s AC inverter outputs. In some of the subsystems, the full 

DC side of the PV array is included as part of the monitoring setup, while 

for other larger and more complex systems, only one or some reference 

DC strings were chosen for the monitoring. 

 No wind sensors (for speed and direction measurements) were 

originally installed at sites, since wind speed in Singapore is relatively 

low, with daily mean values not higher than 2.8 m/s (NEA, 2009). The 

SERIS meteorological station installed at its headquarters rooftop 

reported a daily average of 1.4 m/s for 2011, as shown in Figure 61. 

 It is expected that loggers utilized in the research add errors in the 

order of ±0.2%. Some further errors may be introduced in the form of 

transducers, e.g. those needed to read the shunt voltage measurements. 
Eventually, it can be expected that the overall uncertainty of the 

performance ratio measurements under these conditions is within ±3.0%, 

in line with previous similar scientific investigations conducted in Europe 

(MÜLLER et al., 2015; REICH et al., 2012). 
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3.2.3 Robustness of the data collection infrastructure 

 A challenge on the data collection front for such locations in the 

tropics concerns the logging hardware infrastructure. The rough 

environment conditions posed to monitoring system housings under the 

sun present challenges for the logger and other components such as sensor 

transducers. As seen in the thermal image of Figure 74, the temperature 

inside a monitoring cabinet in Singapore can easily reach values above 

50°C and due to the annual weather similarity, with the absence of 

seasons, these conditions happen almost on a daily basis. Therefore, 

industrial-grade setups were used for the logging hardware (here from 

company National Instruments). Such practice of using higher-end 

monitoring systems hardware guaranteed overall system data availability 

rates greater than 99.5% throughout the course of the investigations. 

 

 

Figure 74: Thermography of a monitoring cabinet at around noon (source: 

SERIS). 

In order to properly perform correlation exercises between 

stations, time synchronization is critical. All 25 meteorological stations 

of the network, as well as the 15 PV system sites, run according to the 

same time server at the SERIS’ PV Systems Monitoring Laboratory. Once 

the clock at a remote station deviates by 150 ms against the master clock 
of the server, a correction routine is applied. This method guarantees that 

remote stations are at a maximum 0.3 seconds adrift from one another.
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3.3 METHODS FOR IRRADIANCE FORECASTING 

3.3.1 Utilization of existing forecasting techniques 

The thesis investigations saw tests with several forecasting 

techniques as follows: 

 

[1] Persistence 

 

Persistence is the most common method utilized in general 

forecasting practices, also serving as a benchmark tool against other 

proposed methods. It assumes the next step of the time series has equal 

conditions to the present. In the case of solar irradiance forecasting, it is 

assumed that the cloud cover remains the same for the next time step. The 

formulation for Persistence used in the investigations is represented as:  

 

𝑘𝑡+1 = 𝑘𝑡 =
𝐺𝑡

𝐺𝑡
𝑐𝑙𝑒𝑎𝑟         (12) 

 

where kt+1 is the forecasted clear sky index in the next time step, kt is 

the value of clear sky index at the present time step, Gt is the value of 

global horizontal irradiance and Gt
clear  is the value of the clear sky 

irradiance, both at present. The Persistence forecast value for the global 

horizontal irradiance, Gt+1, is then completed as: 

 

𝐺𝑡+1 = 𝑘𝑡𝐺𝑡+1
𝑐𝑙𝑒𝑎𝑟          (13) 

 

with the clear sky index kt  in the present multiplied by the clear sky 

irradiance value at the next time step (Gt+1
clear). As per objectives of the 

thesis, the investigatory focus lies on short-term applications. Thus, the 

forecast horizons used equal to 15-min, 30-min (matching the trading 

interval for electricity in Singapore) and 1-hr. 

 

[2] Auto-regressive integrated moving average (ARIMA) 

This forecast is performed on the univariate time series of clear sky 

indices. Each forecast step fits a new ARIMA or ETS model (see method 

[3]), and then makes a one-step ahead forecast t + 1 based on the fitted 

model. 

The univariate ARIMA uses the Hyndman-Khandakar algorithm 

for automatic modeling (HYNDMAN and KHANDAKAR, 2008), where 
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the best ARIMA model is selected for each forecast step according to 

AICc (corrected Akaike information criteria). 

The outline of the algorithm is further described as follows: 

 

 The number of differences d is found by using repeated KPSS 

(Kwiatkowski–Phillips–Schmidt–Shin) tests; 

 

 The values of p and q (the autoregressive and moving average 

components of the chosen ARIMA function) are selected by 

minimizing the AICc after differencing the data d times. The 

algorithm applies a stepwise search to traverse the model space 

instead of exploring all the possible combinations of p and q; 

o Finding the smallest AICc (namely, the best model) is 

achieved by selecting from the following four 

configurations: ARIMA (2,d,2), ARIMA (0,d,0), 

ARIMA (1,d,0), ARIMA (0,d,1). If d = 0, the constant 

c  is included; if d ≥ 1 , the constant c  is set to zero 

(namely, the current model); 

o Variations on the current model are considered such as 

varying p  and/or q  by ±1 ; and include or exclude c 

from the current model. The best model considered so 

far (either the current model, or one of these variations) 

becomes the new current model; 

o The previous step is repeated until no lower AICc can 

be found. 

Pedro and Coimbra in the United States (PEDRO and COIMBRA, 

2012), Masa-Bote and Caamaño-Martín in Spain (MASA-BOTE and 

CAAMAÑO-MARTÍN, 2010), and Dong et al. and Ye at al. in Singapore 

(DONG et al., 2013; YANG, D., DONG, Z., et al., 2014), are some of the 

works in the past years applying variations of ARIMA for solar 

forecasting purposes. 

 

[3] ETS (exponential smoothing state space) model 

Exponential smoothing state space (commonly abbreviated as 

ETS) considers time series as a combination of three components, 

namely, the trend (T), the seasonal (S) and the error (E) components. The 

trend component consists of the combination of a level term (l), and a 
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growth term (b). When describing the forecast trend Th over the next h 

time periods, l and b can be combined in the following five ways: 

 

 None:    𝑇ℎ = 𝑙 
 Additive:    𝑇ℎ = 𝑙 + 𝑏ℎ 

 Additive damped:   𝑇ℎ = 𝑙 + (ϕ + ϕ2 + ⋯ + ϕℎ)b 

 Multiplicative:   𝑇ℎ = 𝑙𝑏ℎ 

 Multiplicative damped:  𝑇ℎ = 𝑙𝑏(ϕ + ϕ2 + ⋯ + ϕℎ) 

 

where 0 < ϕ < 1 is a damping parameter. Besides the trend component, 

the seasonal components can be additive (T + S), multiplicative (T × S) 

or none. This gives rise to the 15 combination of time series components 

shown in Table 13 (YANG, SHARMA, et al., 2015).  

Table 13: Possible combination of time series components in an exponential 

smoothing model (YANG, SHARMA, et al., 2015). 

 
 

Suppose the errors in an exponential smoothing state space model 

(which refers to error, trend and seasonal components) can be either 

additive or multiplicative, then there are in total 30 ETS models. 

Following the framework terminology given in (HYNDMAN et al., 

2008), each state space model according to its Error, Trend, Seasonal 

configurations, respectively, is labeled. For example, ETS (M, N, and N) 

corresponds to simple exponential smoothing with multiplicative errors.  

For the usage of ETS within this thesis, the models are run without 

seasonal component, since the forecast is performed on time series of 

clear sky indices. Yang et al. (YANG, SHARMA, et al., 2015) and Dong 

et al. (DONG et al., 2013) have published articles on solar irradiance 

forecasting using ETS. 

The Persistence forecasting methods, as well as the ARIMA and 

ETS ones were run in the statistical software “R Studios”. 
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[4] Artificial neural networks (ANN) 

Artificial neural networks (ANN) were created from the 

observation of neurons as a special type of cell. In most cases, signals are 

propagated from neuron to neuron until they reach the desired target 

(HAYKIN, 1999). This signal propagation is the basis of an ANN 

architecture, where artificial neurons are arranged in layers along which 

the original input is processed in order to formulate a desirable output.  

A classic example of ANN architecture was shown in Figure 54. 

An input layer takes the original data, which is processed along internal 

neuron layers, called hidden layers until a corresponding value is obtained 

in an output layer. ANNs are commonly used in classification and 

forecasting problems (HAYKIN, 1999). Works by Marquez et al. 

(MARQUEZ et al., 2013), Pedro and Coimbra (PEDRO and COIMBRA, 

2012), Marquez and Coimbra (MARQUEZ and COIMBRA, 2011), 

Mellit and Pavan (MELLIT and PAVAN, 2010) and Cao and Cao (CAO, 

J. C. and CAO, S. H., 2006) are examples of ANN applied to solar 

irradiation modeling. 

Mathematically, an ANN can be represented as an equation, which 

is composed by functions f(x) , called activation functions. Those 

functions compose a weighted sum as shown in Equation 14: 

 

𝑦 = (∑ 𝑤𝑗𝑗 𝑓𝑗(∑ 𝑊𝑖𝑗𝑥𝑖𝑖,𝑗 ))      (14) 

 

where x is the input vector [x1, x2, …, xn]; f is the activation function, 

used for each neuron in the hidden layer; Wij are elements of the weight 

matrix, which connects input layer to the hidden layer, from ith neuron in 

the input layer to jth neuron in the hidden layer; and wj is the element of 

the weight vector connecting the hidden layer to the output layer. This 

model represents an ANN with one hidden layer and a single neuron in 

the output layer. An ANN output is provided by the combination of 

weights and activation functions. 

For the experiments with ANN proposed in this thesis, the following 

settings are applied: 

 

 For 1-hr forecasting horizon, an input layer with 24 neurons: one 

neuron for hour in t  and twenty-three others with irradiance 

values observed in steps t − 23 to t (i.e. information from the 

last 24-hrs); 
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 For 30-min forecasting horizon, an input layer with 13 neurons: 

one neuron for hour in t and twelve others with irradiance values 

observed in steps t − 11 to t (i.e. information from the last 6-

hrs); 

 For 15-min forecasting horizon, twenty-four steps were 

considered (i.e. also with information from the last 6-hrs); 

 A hidden layer with two neurons was utilized; 

 An output layer with one neuron represents the target irradiance 

value in 𝑡 + 1; 

 The activation function for the hidden layer is the hyperbolic 

tangent sigmoid, and for the output layer, the linear transfer 

function is applied; 

 The ANN is trained with adaptive gradient descent with 

momentum training method. 

 

All ANN architecture, tests and validations were conducted in the 

software “Matlab”. 

As a tropical location, Singapore lacks the typical seasons of the 

year, rather having dry and wet seasons (FONG, 2012). The training 

performed for the ANNs uses past comparable months for the analysis. 

For example, March 2014 data is used for training and March 2015 for 

validation, thus maximizing on weather similarities among the involved 

datasets. 

3.3.2 A Hybrid short-term irradiance forecasting method 

For the works surrounding this thesis, the author studied the 

weather in Singapore and how existing forecasting methods behaved at 

various conditions and their apparent shortfalls. A concept was created 

for a new Hybrid method (method [5] to be tested), which takes into 

account meteorological input data acquired through a network of ground-

measuring weather stations deployed by SERIS in Singapore. In the 

method, the concept of “sentries” is adopted, whereby all perimeter 

stations of the island work as a “watchdog” or “sentinel”, detecting 

variations of entrance/exit of clouds, rain clouds and any other detectable 

meteorological phenomena of interest (see Figure 75). As inputs, values 
such as relative humidity, global horizontal irradiance and air pressure 

were fully utilized. Thus, the locations of the superstations, when 

envisioned, followed this method concept. 
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Figure 75: Map of Singapore presenting the location of the nine 

meteorological stations used in the proposed Hybrid method (NOBRE et al., 

2015 (submitted)).  

In the novel concept, the Persistence and ARIMA forecasting 

methods were combined to obtain irradiance forecasts, together with the 

following parameters used to feed the Hybrid algorithm decision tree (as 

“triggers”): global horizontal irradiance (GHI), air pressure, relative 

humidity and clear sky index. Additionally, air pollution readings based 

on the Pollutant Standard Index (PSI) provided by the National 

Environment Agency of Singapore (NEA) were also used for the analysis.  

 

Trigger #1: Air pressure 
 

Based on air pressure readings from stations positioned at the 

boundaries of Singapore, it is aimed that early detection of approaching 

storms originating from Malaysia (to the North) and Indonesia (Sumatra 

to the West and Borneo to the East), as well as from Southern islands of 

Singapore and Indonesia, will lead to enhanced short-term irradiance 

forecasts. Although broken clouds do form within the island, the 

approximation of storm phenomena, originating outside of Singapore and 

traveling towards it, proves to be an invaluable opportunity for enhanced 

solar irradiance forecasts. 

Figure 76 shows the air pressure time series variation between 

minute (t) and the previous minute (t – 1). The pressure variation observed 

at typical clear sky conditions is shown as red circles (on the top of the 
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graph). As a comparison, the blue triangles show the air pressure variation 

at a station to the West of Singapore for the same day as earlier depicted 

in Figure 11 (i.e. during the arrival of a Sumatra squall). Circa 20-min 

before the actual arrival of the darker and heavier rain clouds (the time 

interval was also validated by ground measurements of irradiance), air 

pressure varied due to the thicker cloud front pushing the air ahead. 

For the proposed Hybrid method, any triggering of air pressure 

variation at the eight outskirt stations is perceived as the arrival of rain 

clouds and is thus associated with a soon-to-happen, sudden reduction of 

solar irradiance. The path of the storm is assumed to be linear, although 

such extrapolation (as exemplified in Figure 11) is not always the case.  

 

 

Figure 76: Typical air pressure variation on a 1-min basis for a clear sky day 

conditions and during an approaching storm (NOBRE et al., 2015 

(submitted)). 

 

Trigger #2: Global horizontal irradiance and clear sky index 
 

The clear sky index (kt, defined as the ratio between the measured 

global horizontal irradiance and the clear sky irradiance computed for the 

location) can also be used as an additional input parameter to the Hybrid 

forecasting model as it is closely related to the cloudiness status of the 

atmosphere. 
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In order to better understand certain weather phenomena in 

Singapore, Figure 77 (top) shows the clear sky indices (based on values 

of irradiance on ground level measured against an established clear sky 

model for the island). This graph is assembled using data for two years 

(2013 and 2014) and binned in 1-hour intervals throughout the day (from 

9 am to 5 pm, in eight bin classes). This portion of the graph indicates 

cloudier afternoons in Singapore, what would be expected for a tropical 

location. 

 

 

Figure 77: Clear sky indices binned in eight time hourly intervals in the day, 

indicating cloudier afternoons versus mornings (top). ARIMA versus 

Persistence forecast mean absolute percent errors (MAPEs) plotted against 

hourly binning through the day (bottom) (NOBRE et al., 2015 (submitted)). 

Additionally, Figure 77 (bottom) shows the ARIMA and 

Persistence mean absolute percentage errors (MAPEs), also organized per 

the eight bin classes discussed. This graph already indicates a greater 

underperformance of the ARIMA forecast in the afternoon portion of the 

day. 
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Clear sky conditions are found when the clear sky index is > 0.70, 

although such days are rare in Singapore. The criterion for overcast 

conditions was set for > 0.40 in the investigations, which mostly occurs 

in the afternoon. For the Hybrid method here proposed, ARIMA is 

selected when the diffuse ratio falls between the 0.40 and 0.70 interval. 

Both upper and lower values of the threshold were arbitrarily selected 

based on observations of the local weather. The interval chosen delivered 

satisfactory performance for the trigger points. Once again, it can be 

observed in Figure 77 (top) that periods in the morning are less cloudy 

than in the afternoon, which is typical for tropical locations where rain 

showers often happen in the middle to late afternoon. 

 

Trigger #3: Relative humidity 

 

The relative humidity data (Hamb) are used as a trigger parameter 

to identify the start of the rain storm. The large positive growth rate of 

Hamb indicates when and where rain showers occur. Additionally, the Hamb 

decreases upon the end of a rainstorm, which assists in the identification 

of improving weather conditions ahead. The great majority of storm 

events registered within the two years of data covered in analysis 

conducted occurred from the middle to late afternoon, often dissipating 

after sunset. 

 

Trigger #4: Pollution Standards Index (PSI) 
 

The PSI values, covered in subsection 2.3.3, are also used as one 

of the triggers in the Hybrid method. PSI data acquired from NEA is made 

available in 1-hr intervals. For the first step of the algorithm, the PSI 

levels are checked island-wide. For a condition of levels above 100, the 

Persistence forecast method is triggered. 

 

Proposed Hybrid short-term forecasting 
 

The proposed Hybrid forecast algorithm, combining the 

Persistence and ARIMA methods, uses storm approximation triggers 

from boundary stations to help forecast irradiance conditions expected at 

the reference station after a certain time lag (validation station “V” in 

Figure 75). The series of triggers were set according to pre-determined 

meteorological conditions, dictating the swapping between the two 

utilized forecasting methods – the air pressure sensors are used for storm 

approximation detection (e.g. the storm shown in Figure 11), and relative 
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humidity sensors (for rainfall start, progression and dissipation). In terms 

of the air quality monitoring, the hourly PSI readings from the NEA 

measurement network across Singapore were also directly taken as input 

parameters. 

In a nutshell, the forecasting algorithm targets three severe weather 

conditions, when it is expected to outperform solo ARIMA or Persistence 

forecasts: (1) sudden storms, (2) washouts, and (3) haze episodes. The 

proposed Hybrid method is shown in the form of a flow diagram in Figure 

78. ARIMA and Persistence codes were run with the software R Studios. 

The Hybrid code was organized and developed under a “LabVIEW” 

interface routine (from National Instruments), for both historical checks, 

but also for a live code which runs at SERIS’ PV System Technology 

Laboratory. Only forecasts within the 8-hr window between 9 am and 5 

pm are taken into account, as previously discussed under 3.1.2. 
 

 

Figure 78: Schematic diagram of the proposed Hybrid algorithm for short-

term irradiance forecasting during severe weather events in Singapore 

(NOBRE et al., 2015 (submitted)).  
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Case study #1: Sudden storms 

 

Storms were defined as instances when air pressure sensors 

indicated a certain 1-min variation from an arbitrary threshold. The 

trigger fine-tuning was facilitated by the use of Doppler radar images as 

shown in Figure 11. Radar images contribute not only to the learning 

curve in adjusting the air pressure trigger threshold, but also for 

understanding common storm velocities and paths. 

As Singapore possesses tropical climate, the majority of its rain 

showers take place in the afternoon after sufficient thermal exchange has 

occurred between the Earth’s surface and the atmosphere. From data 

analysis of a two-year database, the most common timeframe for sudden 

storms was registered within the 2 pm to 4 pm period. Figure 79 shows 

one of such storms. In this particular example, global horizontal 

irradiance (red squares) almost reached 0 W/m2, while relative humidity 

presents a fast increase with the arrival of the storm. 

 

 

Figure 79: Global horizontal irradiance during a variable and a cloudy day. 

The variable day experienced a sudden storm after 15:00, which can be 

visualized by the sharp increase in relative humidity associated with the 

presence of rain (NOBRE et al., 2015 (submitted)). 

 As highlighted earlier in Figure 47, the main contribution of the 

storm detection system proposed lies on the fact that the Hybrid model 

allows avoidance of peak errors inherently present in current time series-

based forecasting methods such as ARIMA and Persistence, which rely 
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on previous irradiance steps data. Using the information of peripheral 

ground measurements before the arrival of storms at a given point of the 

island allows reduction of prediction errors. 

 

Case study #2: Washouts 

 

A washout event occurs when rain showers prevail during the 

entire time period of interest, leading to extremely low total irradiation 

levels. For the Hybrid algorithm, a daily irradiation of 1.50 kWh/m2 was 

arbitrarily set as a threshold below which all days are classified as 

washout days. The average long-term daily irradiation value for 

Singapore is 4.47 kWh/m2 (as per subsection 2.3.2), which accounts to an 

annual typical meteorological year of 1,631 kWh/m2. A washout day is 

also shown in Figure 80 for comparison purposes against a variable day. 

Although the figure was assembled to show normalized output of PV 

systems, the maximum GHI throughout Singapore never reached 200 

W/m2 for the entire day, with the relative humidity also never going below 

90%. 

PV systems in Singapore should perform at an average of 80% 

performance ratio for well-designed systems and 85% for leading-edge 

installations (KHOO, NOBRE, et al., 2014; NOBRE, YE, et al., 2012). 

During peak-hours of solar irradiance, even with cloud-edge and cloud-

enhancement effects, PV systems in Singapore tend to have maximum 

AC power outputs of approximately 85-90% of their nameplate 

capacities. Figure 80 shows the normalized AC power output of ten 

existing PV systems of different sizes and technologies located across 

Singapore during a so called “washout” day. The highest value recorded 

for any of the systems was ~10% of the rated nameplate capacity, with 

the average value of the ten systems, shown as a thick black line in Figure 

80, reaching only ~6% of an equivalent maximum nameplate installation. 

As a comparison, the normalized AC power output on a typical irradiance 

day is shown in the same figure, with an average peak of ~78% just before 

noon. 

The use of the Persistence forecasting method when washout 

conditions are identified in Singapore does not necessarily entail the 

improvement of a short-term irradiance forecast. It rather serves as an 

indication to stakeholders and other scientists in the field that the use of a 

simple Persistence allows for minimum forecasting errors against other 

more complex methods (such as ARIMA or ANN). 
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Figure 80: Normalized 1-min AC power output from ten existing PV systems 

located across Singapore representing different sizes and technologies on a 

“washout” day and also on a typical day (NOBRE et al., 2015 (submitted)). 

Case study #3: Haze periods 

 

The topic of haze was covered in detail in subsection 2.3.3., which 

can be summarized by the period when forest fires for agriculture land 

clearing, mainly in Indonesia, trigger air pollution events in Singapore. 

Generally, haze episodes occur during the dry season and tend to last for 

7-10 days on average, depending on prevailing wind speeds and 

directions. Apart from its influence on the performance of PV systems 

(LIU et al., 2014b), the haze situation has a somewhat similar effect on 

PV yields as washout days do, whereby short-term irradiance forecasting 

provided by the Persistence method achieves lower or on-par accuracy 

against more complex methods, such as the ARIMA model. 

As a method step for the Hybrid algorithm, only haze events 

presenting PSI larger than 100 were considered. This set point was based 

on previous studies (LIU et al., 2014b; NOBRE et al., 2015 (submitted)). 

For such conditions, it is common that the diffuse fraction of solar 
irradiance reaches high values, comparable to those in washout events.  

As mentioned before, the reduction in the forecast uncertainty is likely 

better accomplished by the use of the Persistence method. 
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Readings for PSI levels were obtained via the NEA website (NEA, 

2013b). The PSI data reflects a total of six pollutants including total 

particulate matter (PM10) and fine particulate matter (PM2.5). PSI data 

provides accurate information on air quality, taking measurements from 

a network of air monitoring stations located in different areas of 

Singapore. 
 

Validation 
 

A ground measurement site located at the center of Singapore 

(station “V” in Figure 75) is used as reference to validate the forecast 

outputs provided by the Hybrid model proposed. For the tests of the 

method, ten days with approaching storms (five from 2013 and five from 

2014) were randomly selected among the pool of available stormy days, 

ten days with washout conditions, and ten days from a strong haze episode 

in 2013 and a lighter one in 2014 were also arbitrarily chosen for testing 

and validation purposes. The pool of potential case studies was earlier 

presented in Table 5. 

As gauge of the benchmarking among various methods, the 

normalized root mean square errors (nRMSE) is calculated for the Hybrid 

method, as well as for Persistence-only and ARIMA-only using the 

validation site.   

For usage of the method at other locations in Singapore other than 

the selected station “V”, it is necessary to gauge whether the chosen site 

falls in central parts of the island – in which situation the methodology 

could be implemented on a similar basis, with minor adjustments to the 

travel distance for storms. For near coastal areas, the necessary adaptation 

of the method lies on the fact that the time gained in detecting an 

approaching storm is reduced, thus potentially compromising the results 

for cases of very fast storms. For this reason, the method goes through a 

variation proposed by the author as presented later in section 3.3.4. 
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3.3.3 Benchmarking of methods 

The efforts from other early works in irradiance forecasting in 

Singapore included stochastic models such as ARIMA, Persistence, 

exponential smoothing state space (ETS) and numerical weather 

prediction (NWP, via the WRF model) (ARYAPUTERA et al., 2015; 

DONG et al., 2014; 2013; YANG, D., DONG, Z., et al., 2014; YANG et 

al., 2012; YANG, SHARMA, et al., 2015). 

Within this thesis, specific case studies are addressed (sudden 

storms, washouts and hazy conditions) in the testing and validation of the 

novel Hybrid method. Apart from those exercises, all five methods 

discussed in 3.3.1, i.e. [1] Persistence, [2] ARIMA, [3] ETS, [4] ANN, 

and the [5] proposed Hybrid (covered in 3.3.2), are tested for a one-year 

period of data (from April 2014 to March 2015) using the central ground-

measuring station “V” (in Figure 75) as validation site. 

For the short-term solar irradiance forecasting investigations, the 

normalized root mean square error (nRMSE) is further used as a figure of 

merit to determine forecast efficacy on a month-by-month basis, see 

Equation 15. 

 

𝑛𝑅𝑀𝑆𝐸 = 100%√
1

𝑁
∑ (𝐺𝑓𝑐 − 𝐺𝑚)

2𝑁
𝑡=1      (15) 

 

where Gfc is the forecasted irradiance in 𝑡 + 1 time step and Gm is the 

measured irradiance also in the future step. 

The forecasting skill “s” is defined to measure the improvement of 

the proposed Hybrid model against the simplistic Persistence method, as 

a baseline. The value of “s” is calculated by Equation 16.  

 

𝑠 = 1 −
𝑛𝑅𝑀𝑆𝐸

𝑛𝑅𝑀𝑆𝐸𝑝𝑒𝑟𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑒
       (16) 
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3.3.4 Expanding the Singapore sensing network 

Although a proposed novel method is tested for a central location 

of the island (validation station “V” in Figure 75), it is desired that other 

sites within Singapore do not suffer from large forecasting errors when, 

for example, a sudden storm crosses the perimeter of the country. 

Therefore, it is proposed that the existing remote sensing network is 

expanded to include an additional number of six remote stations – four of 

them in islands surrounding Singapore (Pulau Ubin in the Northeast, 

Jurong Island in the Southwest, and St. John’s Island & Pulau Semakau 

to the South). A fifth and sixth stations at the East and West borders of 

Singapore complete the expansion works, at Changi Bay and Tuas 

Checkpoint, respectively. See Figure 81 for the six expansion sites (“E”) 

and further station details in Table 14. Stations which are still to be 

deployed (“TBD”) by the submission date of this thesis are marked in 

italics. 

 

 

Figure 81: Existing (as of November 2013) and proposed stations (by end 

2015), as well as perimeter belts of superstations (NOBRE et al., 2015 (in 

preparation)). 

On top of the new perimeter station additions, the expansion plan 

includes the revamp of basic station #410 into a superstation, thus 

allowing for an early warning detection system for the Tuas South 

industrial area (“Industry 1”). Other major industrial areas are marked in 
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Figure 81, where large manufacturing plants and warehouses provide 

premium space for the deployment of PV systems. Furthermore, station 

#431 is to be located just outside Tuas Checkpoint (the second link bridge 

connecting Singapore and Malaysia). The presence of this station allows 

for a warning system station for several water catchment reservoirs to the 

West of the island, earmarked for floating systems deployment, having 

already been assessed to potentially host hundreds of MW of PV systems. 

Table 14: Basic characteristics of six ground-measuring meteorological 

stations for a remote sensing network expansion in Singapore (NOBRE et 

al., 2015 (in preparation)). 

ID 

# 

Station 

Name 

District in 

Singapore 

Latitude 

[N] 

Longitude 

[E] 

Altitude 

[m] 

Date 

Deployed 

E1 426 Changi Bay 1°18’57” 104°00’55” 12 May/15 

E2 427 St. John’s Isl. 1°13’04” 103°50’58”  27 Jun/15 
E3 428 Pulau Ubin 1°24’12” 103°58’09”  9 TBD 

E4 429 Pulau Semakau 1°12’03” 103°46’50”  5 TBD 

E5 430 Jurong Island 1°13’51” 103°40’45” 15 TBD 

E6 431 Tuas Checkpoint 1°20’55” 103°38’16” 8 TBD 

 

The smaller perimeter belt shown in Figure 81 (in brown), takes 

into account the most outward stations of the network possessing 

superstations (as of the completion of the original network in November 

2013). It encompasses an area of roughly 500 km2, covering most of the 

country’s highly populated areas (made up by Housing & Development 

Board buildings, also known as “HDBs”, which host ~40% of all PV 

systems in Singapore to date, with further plans for expansion). 

Although the majority of the areas outside of this perimeter are 

military training zones or heavy industry-specific areas (such as oil 

refineries in Jurong Island, “Industry 3”), the available number of 

industrial rooftops to the Southwest- (“Industry 2”) and East-ends 

(“Industry 4”) of Singapore, added with the fresh water reservoirs on the 

edges of the West part of the island, make the extension of the network a 

desired research sub-product. The proposed expanded perimeter belt (in 

yellow) encompasses an area of ~800 km2, 60% more than the original 

network, and likely to contain the great majority of bigger volume PV 

systems in the country in a foreseeable future. 

This portion of the method promoted the expansion of the network 

and allowed for the demonstration that outward stations indeed can help 

with short-term forecasting enhancements for PV systems located outside 

of the original belt of meteorological stations.   
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3.3.5 Sky imagery as short-term forecasting support tool 

As presented in 2.4.5, sky imagery utilization has been previously 

used as means of forecasting solar irradiance. Due to cloud motion 

physics, the technique is highly suitable for short-term applications, as 

clouds within the field of vision of the camera take a few minutes to enter, 

cross and exit the image. For this reason, the deployment of fish-eye lens 

sky cameras in Singapore was promoted, with the network shown in 

Figure 56 containing thirteen cameras as an outcome of the efforts 

promoted within this thesis. 

In the publications cited, usually cloud height or speed are studied, 

so that it can be estimated where clouds are headed and their dynamics. 

Via a paper by Yang et al. (YANG, WALSH, et al., 2013), block 

matching algorithms (BMAs) were explored in creating motion vectors 

describing changes in the irradiance conditions on a 2D map of Singapore. 

The work further introduced the use of BMAs for cloud-contour tracking, 

by comparing two images in 𝑡 − 1 and 𝑡. To avoid problems of mapping 

of the many resulting vectors of the image, a grouping of five points was 

proposed, which are then seen as red small motion vectors in Figure 82. 

The orientation of the vector shows the resulting direction, with the length 

of the vector proportional to the speed of motion of the cloud segment.  

Figure 82 shows three sky images taken in 1-min intervals, with 

the vector fields created between images one and two, and then between 

images two and three, shown at the bottom of the figure. A further 

enhancement promoted by the author of this thesis to the concept first 

proposed by Yang et al. was the creation of a resultant vector (shown in 

blue in the figure) which is a representation of the predominant cloud 

group direction of motion for the entire image, with the length of the 

vector also representing the traveling progression of the cloud grouping. 

Precise determination of cloud speeds and their height go beyond the 

scope of works included in this thesis. 

In typical days, irradiance levels in Singapore can vary 

dramatically as earlier shown in Figure 26 and Figure 46. For such days, 

it is expected that cloud vectoring, based primarily on broken clouds, 

likely yields irregular cloud speeds and directions throughout the island, 

thus making it difficult for their use in the forecasting products. However, 

it is proposed that minutely vector creation for the deployed cameras will 

assist wind direction gauging, which in turn have two uses: a) 

determination of predominant wind directions across Singapore, with 

similar vectors throughout the island likely indicating major cloud events 

(e.g. storms) approaching or progressing through the island, and b) assist 
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haze episode arrival, development and dissipation, as air pollution is 

highly correlated to prevailing wind conditions. 

 

 

Figure 82: Example sequence of three sky images and associated output 

cloud motion vectors (NOBRE et al., 2015 (in preparation)). 

Finally, with a hybrid investigation containing irradiance drop at 

stations in a sequence, together with cloud vectoring, and Doppler radar 

assistance, approaching and developing storm directions are investigated 

to act as a support tool to other forecasting methods. 
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3.4 METHODS FOR PV SYSTEM POWER CONVERSION 

3.4.1 Single system modeling opening remarks 

When developing and performing new solar irradiance forecasting 

methods, it is aimed that deviations between measured and predicted 

values progressively decrease towards an “unattainable no-error” 

condition. When launching a novel algorithm such as the one discussed 

in 3.3.2, the main intent is to prove its higher accuracy versus previously 

deployed methods. It is often the case in the relatively new field of solar 

irradiance forecasting that constant, but gradual improvements are made. 

As a consequence of the efforts invested in reducing forecasting errors, it 

is hoped that such improvements are not achieved in vain, when 

performing power generation estimations for PV systems, in a future 

dominated by a vast amount of these renewable energy sources. A coarse 

implementation of PV simulation or up-scaling routines might wipe out 

any improvements achieved from forecast algorithms. 

In subsection 2.6.2, formulation for PV system modeling was 

introduced. When using the equations presented, Figure 83 summarizes 

the efficacy of the model, here for a PV system in Singapore and at a 

condition of low wind speeds.  

 

 

Figure 83: Simulated versus measured AC power output of a PV system in 

Singapore under low wind speeds (source: SERIS). 
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Figure 83 plots the minutely AC energy output values simulated 

for a single day, with the model using measured in-plane irradiance from 

a calibrated silicon sensor on site. It is contrasted by the actual measured 

AC power output read from an AC meter at the output of a PV inverter. 

For this particular example, the fit of the two curves is within 0.5% of 

error, which highlights the good fit of the formulation, but also the quality 

of this particular system presented (as it is later presented in 3.4.2). This 

was addressed in section 2.5, whereby an accurate PV system power 

output modeling depends on several factors, like the age of the system as 

an example (e.g. smaller simulation errors for systems which have yet to 

suffer major degradation effects), among other influences, which are 

discussed within section 3.4. 

As PV systems performance in warm climates are concerned 

(covered in 2.5.4), understanding how systems behave in such locations 

plays a crucial role in power conversion forecasting and error curtailment. 

For that reason, and as yet another example, special attention should be 

given to the estimation of module temperature based on system mounting 

conditions, which could account for an almost 3-fold temperature 

variation between sites in a tropical climate, see Figure 84 (YE et al., 
2013). Subsection 3.4.2 covers how error minimization is intended within 

the investigations of this thesis. 

 

 

Figure 84: Seven categories presented for module temperature variation in 

Singapore (YE et al., 2013). Utilization for the method was further validated 

for PV systems in Brazil (NOBRE, MONTENEGRO, et al., 2012). 
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3.4.2 Factors heavily influencing PV system modeling 

From the list of factors influencing PV modeling described in 

section 2.5.2 and 2.5.3, this thesis addressed the following five strong 

contributors: a) PV system modeling, b) temperature losses, c) shading 

influences, d) long-term degradation and e) irradiance availability due to 

air pollution levels. Various case studies presented allowed the gauging 

of simulation efficacy for the power conversion in the tropical 

environment of Singapore. 

 

[A] System modeling 

Well-known formulae as per Equations 9-11 are implemented as a 

validation tool for systems in a tropical environment. First, it is assumed 

only global horizontal irradiances and ambient temperatures are known. 

For Equation 11, a typical concrete rooftop value of γ = 0.023 °Cm2W-1 

is used, as per (YE et al., 2013). Secondly, for a better validation against 

real-field operations, the model with known in-plane irradiance and 

module temperature parameters is tested, thanks to the network of PV 

systems deployed in the country as previously described in 3.2.2. Finally, 

a simplistic method using a fixed value of performance ratio (0.80 as 

commonly used by system integrators in Southeast Asia) is tested using 

data for a then new PV system; 

[B] Temperature losses 

Simulation of power output for a PV system (“system 1”) is made 

taking into consideration a common mounting system loss factor for 

Singapore (γ = 0.023 °Cm2W-1), as shown in a) above and binned as the 

slope P3 in Figure 84. The system simulation is then tested taking into 

account that the validation system (“system 2”) is in fact mounted on a 

metal rooftop, thus experiencing hotter module temperatures (binned as 

the slope P6 in Figure 84). Such systems are commonly found in 

Singapore (e.g. on factory/warehouse rooftops, see Figure 13, as well as 

private houses, see Figure 12, as examples). System 2 of the analysis has 

similar age and is located ~2 km from system 1, thus experiencing nearly 

identical weather conditions; 
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[C] Shading influences 

Two PV system sections on the same building complex (a hospital 

in Singapore, see Figure 85) are used for demonstration on how shading 

could negatively affect power forecasting. Shaded and unshaded systems 

are contrasted in the analysis. This system was the last installation added 

to the network of sites under research-grade monitoring (system #115 in 

Table 11). 

 

Figure 85: Hospital complex in Singapore, home of four PV system sections 

(A, B, C and D), three of which are unshaded (A, B and C). The glass-glass 

canopy PV system in section D is heavily shaded by the surrounding hospital 

wings (source: SERIS, adapted for this thesis). 
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[D] Long-term degradation 

PV system power outputs at a given site, but with readings that are 

five years apart, were shown to highlight the critical influence that aging 

has on simulation and power forecasting. In Figure 86, aging is 

showcased by contrasting a high performing system (with a performance 

ratio decay of -0.5% per annum) versus a system which operated well for 

its first two years of life but later suffered from severe soiling 

accumulation due to a construction site nearby, without going through a 

complete cleaning routine since then (here PR decay of -3.3% p.a.). 

 

Figure 86: Daily performance ratios of a high performing PV system (left) 

and of a poorly maintained one (right), with estimated degradation rates 

after several years of operations of -0.5% and -3.3% per annum (NOBRE et 

al., 2015 (in preparation)). 

[E] Irradiance availability due to air pollution 

Comparisons on PV system power output were made between a 

clear sky day with low air pollution levels against hazy skies which took 

place in June 2013 (similar period as shown in (LIU et al., 2014b) and 

addressed throughout this thesis in other works by the author). 

Data used for the exercises [A] through [E] stem from a variety of 

systems within the portfolio described in Table 11. The data periods used 

in the investigations depend on the challenge at hand. For example, to 

demonstrate degradation influences, analyses from datasets five years 

apart are used, thus highlighting system output baseline differences 

between a newly system deployed (in this case back in 2010) versus half-

decade later (i.e. in 2015). 
It is proposed that a generic formulation for PV power conversion 

is achieved within the thesis, which is then applied for alternative 

validations, such as up-scaling routines discussed in 3.4.4. 
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3.4.3 Modeling influences due to haze 

In Figure 62, when discussing other factors that influence PV 

systems performance, it was seen how hazy conditions in Singapore 

clearly affected the yield of PV systems in June 2013. Quantifying such 

impact, and even estimating economic implications from it, are areas of 

interest for governments and policy makers, as argumentation builds up 

when air pollution occurs whether it was caused by neighboring countries. 

Within this thesis, the impact of haze on the power output of solar 

photovoltaic (PV) systems in Singapore was also investigated, with the 

goal of understanding implications to PV power conversion routines, to 

gauge implications to forecasting activities and to address considerations 

for a future where solar could contribute ~20% of the total electricity 

demand for the country. 

It is trivial to realize that the presence of haze will generate loss of 

solar irradiance reaching the Earth’s surface. However, gauging the 

effects is a more difficult task. Although diminishing levels of 

illumination on the ground are obvious when air pollution is high (as 

shown in Figure 62), one must be able to differentiate between the 

reductions in irradiance caused by haze or caused by clouds, or by a 

combination of both. Furthermore, haze not only has an impact on the 

light intensity (which affects the electric current), but also on the PV 

module temperature (which affects the voltage). In this thesis, a novel 

filtering technique was proposed to eliminate cloud effects, thus allowing 

the gauging of the full impact of the haze alone. As discussed in section 

2.3.3, although other air pollution sources do exist in Singapore, such as 

caused by refineries and the country’s car fleet, the investigations 

conducted in this thesis are exclusively associated with a haze episode 

triggered by forest fires well documented in the Southeast Asia region 

during June 2013. 

A clear sky day was also determined as a baseline for Singapore, 

and compared against increasing air pollution conditions. Finally, an 

analysis of ten existing PV systems’ operational behavior in Singapore 

(five of crystalline wafer-based and five of thin-film technologies) was 

conducted. 

In order to observe the reduction of irradiation at ground level for 

polluted days as a function of PSI levels (PSI values above 50, with the 

descriptor “good”), a first necessary step is to determine a baseline 

situation, which are the irradiance conditions on a clear sky day without 

haze (PSI < 50). Due to rapidly changing weather conditions and various 

layers of clouds, clear sky days in tropical locations are rare. Therefore, 
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it is not really feasible to obtain the baseline days by measurement records 

alone. Instead, such days are best derived from measured data on non-

clear sky days using statistical methods. 

The main task of the presented method is to separately quantify 

and eliminate variability caused by haze, clouds or high moisture levels 

in the air. In this portion of the thesis, it is proposed the use of three filters 

for the elimination of cloudy or near-cloudy conditions during specific 

PSI conditions. That is achieved by performing a sampling analysis on 

irradiances recorded at the SERIS meteorological station using a 

calibrated pyranometer. These filters are described and demonstrated in 

the following paragraphs. 

In Figure 87, Filter #1 (“Humidity Filter”, top row graphs) is used 

to eliminate events when the relative humidity is above 80%. This way, 

rainy conditions or pre/post rain periods, where clouds are present, are 

discarded. The selection of the value threshold was obtained from 

experience and long-term weather observations. Red triangles throughout 

Figure 87 represent eliminated points at the given filter step, while blue 

circles have passed the respective criterion. Three days with sunny, rainy 

and intermediate characteristics are shown to illustrate the performance 

of the filters. 

Next, Filter #2 (“Diffuse Irradiance Fraction Filter”, shown in 

Figure 87, middle row graphs) is implemented on all points that have 

passed the previous step. The diffuse irradiance fraction is defined as the 

ratio between measured diffuse horizontal irradiance and the global 

horizontal irradiance. The filter works as a mechanism to remove 

situations with high cloud cover, however no rain. The threshold set was 

0.50, with data points being eliminated when ratios are above the selected 

value. Surviving points are shown in blue circles, while red triangles 

represent the eliminated points at the current filter. Black crosses are those 

points eliminated in the previous Filter #1 step. 

Filter #3 (“Clear Sky Irradiance Band Filter”, seen in Figure 87, 

bottom row graphs) is the last step of the irradiance loss analysis, which 

ensures that the targeted data for the clear sky conditions are within ±100 

W/m2 irradiance of the modeled clear sky values. The clear sky irradiance 

model utilized in this study was adopted from reference (YANG, D., 

WALSH, W. M., et al., 2014). Filter #3 works to remove situations of 

either cloud-edge/cloud-enhancement effects when irradiance tends to be 

higher due to either reflected light between the ground and the base of 

clouds, followed by reflections back at irradiance measurement devices, 

or enhanced by a thin layer of clouds (see Figure 41). Also, it assists in 
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the elimination of points which were not removed within the robustness 

of Filter #2 (e.g. a point where the diffuse irradiance fraction might have 

been 0.48, yet clearly outside of the range expected for a clear sky 

condition, with values for irradiance lower than expected). The selection 

of the arbitrary value of 100 W/m2 was based on finding a set point which 

would not cause the elimination of an excessive number of points from 

the analysis, yet strict enough to remove values obviously outside of the 

expected clear sky range. Points outside of the ±100 W/m2 clear sky 

irradiance band are shown as red triangles in the final filter step graphs, 

with removed points from Filter #2 marked as orange asterisks. Black 

crosses are those points eliminated in the previous Filter #1 step. 

In order to avoid variations of the daily irradiance profiles 

throughout the year due to the position of the sun in the sky (with varying 

zenith and altitude angles), only data points from the June months from 

2010 to 2013 were used in the analysis (N.B. June 2013 was the month of 

the major haze event reported). Data are taken from the SERIS 

meteorological station, which started operations in May 2010, thus a total 

of 120 June calendar days were available and used for the analysis, also 

to reduce the impact of the year-on-year variability of the irradiance due 

to the position of the sun in the sky. One-minute global horizontal 

irradiance averages were used for the assessment based on readings of a 

pyranometer. The data points are combined forming a so-called “average 

solar irradiance day” for the month of June for the given air pollution 

conditions. The analysis is further expanded to include readings 

originating also from a calibrated crystalline silicon sensor (which has a 

narrower spectral response range than a pyranometer). 

24-hour PSI averages were used for the selection and 

categorization of the available June days. Days were separated into four 

arbitrary categories: a) PSI ≤ 50, b) 50 < PSI ≤ 75, c) 75 < PSI ≤ 100, and 

d) PSI > 100 in an attempt to gauge the loss of irradiation with increasing 

levels of air pollution. Days within the same PSI binning were processed 

through the filters and averaged together for every one-minute step of 

irradiance values. PSI data from a NEA station nearby to the SERIS 

meteorological station was used as provider of the air pollution readings. 
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Figure 87: Demonstration of the performance of three filters in three types 

of days (sunny, rainy and cloudy conditions) to derive the progressive sky 

conditions for the haze evaluation (NOBRE et al., 2015 (accepted)). 

After assessing reduction of irradiation on ground level at a single 

point at the SERIS meteorological station, an assessment and 

benchmarking is proposed for the power output of ten PV systems in 

operation in Singapore through the same time period of the analysis for 

their clear sky day behavior, using in-plane irradiance sensors. 

Additionally, an assessment of haze influence to these systems’ 

performance metrics was conducted, taking yield (in kWh per kWp per 
day) and performance ratio (PR) as key indices for the comparison. The 

extraordinary day when a hazy but cloudless day occurred (24th June 

2013, previously graphed in Figure 62) was used for benchmarking. For 

a more diverse comparison, both crystalline silicon wafer-based and thin-

film technology based PV systems were evaluated.  
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3.4.4 Country-wide up-scaling routines 

Byproducts of irradiance forecasts in a future of massive PV 

development will be estimations of the amount of photovoltaic power 

delivered to the grid in a large area of interest, e.g. a city, where thousands 

of solar installations are present. When PV systems are improperly 

modeled, either as a single unit or as a fleet, irradiance forecasting errors 

are further compounded, making PV power predictions less robust. 

Thanks to daily available power output records of PV systems from 

the National Solar Repository (discussed in 2.5.5), day-by-day simulation 

exercises are made possible for the suggested method here presented for 

an up-scaling routine for Singapore. 

In this regard, ten PV systems (accounting for ~10% of the volume 

of installations in Singapore as of end of 2014) were selected for 

validation of the proposed up-scaling method. These systems are shown 

in Table 15 with their basic characteristics needed for the exercises. The 

selection of these systems was based on amassing a variety of system 

sizes, with different roof types, ages and scattered across Singapore. 

Table 15: PV systems basic characteristics used in the detailed up-scaling 

exercises. Systems’ age are based as of the date of the tests, March 2015 

(adapted for this thesis). 

 
 

The derived power conversion generic formula (outcome of 3.4.2) 

is used for the up-scaling exercises. A typical month was chosen (March 

2015), found to have daily irradiation records as close to the Singapore 

long-term average as possible. Stations used as source of meteorological 

parameters are chosen based on the “nearest neighbor” concept,  

System 

#

Installed       

Capacity            

[kWp]

Nearest 

Superstation      
[km]

System      

Age            
[years]

Type of Roof Tilt          
[deg]

Azimuth 
[0-360]

901 1,006.8           2.1                 1.5                 Clay tiles 23        0/180

902 999.9              4.0                 2.1                 Metal 5          90/270

903 707.5              5.2                 1.0                 Concrete 10        160/340

904 133.6              5.6                 0.5                 Metal 10        160/340

905 122.6              6.6                 5.1                 Concrete 10        140

906 44.8                1.3                 4.2                 BIPV Metal flat-10 90/270

907 14.4                6.6                 5.1                 BIPV Airgap 4          90/270

908 12.2                1.5                 0.5                 Metal 10        150/330

909 5.2                 3.5                 7.2                 Metal 8          10        

910 3.8                 5.6                 8.9                 Metal flat flat

Total 3,050.8          4.2                 3.6                 

~10% of total volume in SIN Avg. distance Avg. system age
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discussed in one of the publications of the author of the thesis (NOBRE, 

YANG, et al., 2014). 

In the up-scaling refined portion of the method, these ten systems 

went through the following simulation sequence: 

 

1) Determination of nearest neighbor superstation within the SERIS 

network (as per Figure 71); 

 

2) Conversion of global horizontal irradiation (GHI) and diffuse 

horizontal irradiation data (DHI) on hourly time steps into 

irradiance on module plane (Gmod), using the Perez model; 

 

3) Utilization of hourly values of Gmod, together with readings for 

ambient temperature (Tamb) in Equations 9-11. Module 

temperatures (Tmod) to be estimated via previous publications 

(NOBRE, MONTENEGRO, et al., 2012; YE et al., 2013) in 

accordance with roof types and discussed in 3.4.1. This step 

guarantees hourly intervals of power output estimations for the 

PV systems. Calculating daily electricity generation for the 

systems was up-scaling test result #1. This value is further 

converted and normalized as per a system’s installed capacity, 

thus becoming the yield of the system (“YAC-1”, in kWh/kWp per 

day). This facilitates inter-comparison between systems;  

 

4) As mentioned, the generic formulation in 3.4.2 was taken into 

consideration when fine-tuning and executing the up-scaling 

routine; 

 

5) In up-scaling test #2, the commonly used practice of arbitrarily 

selecting a value of performance ratio is used (PR = 0.80 

method). This accounted for up-scaling test result #2 (“YAC-2”); 

 

6) Comparison of both estimated values for daily system’s yield in 

kWh/kWp (YAC-1 and YAC-2) with measured ones (“YAC-0”) and 

calculate the mean average percentage errors (MAPEs), thus 

promoting a benchmarking of the more refined versus crude 

methods.  
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4. RESULTS AND DISCUSSIONS 

 

4.1 SHORT-TERM FORECASTING RESULTS 

4.1.1 Novel short-term forecasting method findings 

The investigation on short-term forecasting using the described 

Hybrid method in 3.3.2 was first presented as a concept of using boundary 

meteorological stations in Singapore in an “alarm detection system” for 

approaching storms, which in turn helped reduce forecasting errors in a 

tropical location like Singapore (NOBRE, SEVERIANO_JR., et al., 

2014). In more recent investigations on the topic, two other extreme 

weather phenomena were added to the analysis – “washout days” (days 

with extreme rain events) and also “hazy days” (where air pollution was 

considerably high). The work was also further expanded with the addition 

of data from 2014, together with the previously presented 2013 case 

studies in order to further strengthen the applicability and robustness of 

the envisioned method. 

As described in 3.3.2, ten random days, among the portfolio of 

stormy days, were selected for the evaluation of the algorithm. The 

findings for the first case study analysis are summarized in Table 16. It 

shows results for the ten selected “sudden storm” days. The proposed 

Hybrid method achieved performance improvements of ~10% in absolute 

terms if compared with the Persistence method as a forecasting baseline. 

Also noticeable is the fact that ARIMA underperformed against the 

Persistence model for days with extreme weather conditions. This can be 

explained by the classical storm duration in Singapore starting in mid- or 

late afternoon, with dissipation near sunset or shortly after it. This allows 

the Persistence forecast to thrive, which is one of the reasons for this 

method being chosen as an algorithm of choice for the Hybrid model after 

a storm has reached the validation station. 

An example of the better performance of the Hybrid method is 

shown in Figure 88 (top), with the forecasted irradiance (black dash line) 

following the measured irradiance (green continuous line) thanks to an 

earlier-detected approaching storm. The minimization of the forecast 

error can also be visualized in Figure 88 (bottom), where ARIMA and 

Persistence forecasts demonstrated their known under-performances due 

to their reliance on past irradiance step information. 
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Table 16: Sudden storm forecasting error improvement when using the 

novel Hybrid method (NOBRE et al., 2015 (submitted)). 

 
 

 

Figure 88: Measured GHI at a central site in Singapore, with the forward 

ARIMA, Persistence and proposed Hybrid 15-min forecasts (top). The 

MAPE is given, showing considerable error spikes upon the arrival of the 

storm for both Persistence and ARIMA methods, but not for the proposed 

Hybrid model (bottom) (NOBRE et al., 2015 (submitted)). 
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Results for the second case study addressing ten random washout 

events are presented in Table 17, including the total daily irradiation, as 

well as the nRMSEs obtained by using the Persistence-only and ARIMA-

only forecast methods. In such example data, the Persistence forecast 

vastly outperformed ARIMA, which would be expected for a situation of 

total cloud cover condition (very low kt values), which suits Persistence. 

The error avoidance column aims at highlighting detrimental errors for 

non-adaptive short-term forecasting models, which rely on running a 

single algorithm throughout all daily and yearly conditions. 

Table 17: Case study on washout conditions in Singapore and error 

avoidance by selection of the Persistence method over ARIMA (NOBRE et 

al., 2015 (submitted)). 

 
 

Finally, the third set of case studies is aimed at simplifying short-

term irradiance forecasting during strong haze episodes, acting similarly 

to the washout events. The PSI threshold criterion of 100 was easily 

crossed in 2013, when Singapore experienced a notorious haze season, 

reaching unhealthy air quality levels for several days. In 2014, the number 

of occurrences of haze days was lower. 

Table 18 shows the results of Persistence-only versus ARIMA-

only forecasts. The error avoidance metric did not indicate much lower 

values for the hazy, as they were for the washout days (with the use of 
Persistence), but indicated nevertheless that future short-term forecasting 

methods may as well use the more simplistic Persistence forecast during 

such air pollution events. In any case, it is important to remember that 

haze comes associated with loss of irradiation at ground level. Thus, a 

limitation in the maximum output of PV systems must be accounted for, 
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also when modeling its grid integration impact due to the energy 

generation shortfall expected. 

Table 18: Case study on hazy days in Singapore and error avoidance by 

selection of the Persistence method over ARIMA (NOBRE et al., 2015 

(submitted)). 

 
 

The novelty of the proposed method lies on the prediction of 

massive drops in irradiance (i.e. consequently power output of PV 

installations) caused by approaching storms approximately 15-30 minutes 

in advance – which is typically sufficient to ramp-up conventional 

generation capacities (in Singapore, gas-fired turbines). Furthermore, the 

sensor network allows the identification of washout conditions before 

sunrise, allowing the grid operator to also react in advance and 

compensate for the missing solar power in such days. 

Most cloud motion tends to come from the West parts of Singapore 

(thus coming from Sumatra in Indonesia, as per example animation of the 

Sumatra squall in Figure 11). The caveat: it is expected that there is a 

tendency for better forecasts for the Eastern parts of the island as most 

cloud activity for Singapore initiates from the West. 
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4.1.2 Benchmarking of various forecasting methods 

The novel Hybrid forecasting method fared better than the use of 

existing techniques for a 15-min forecasting interval window. The 

following tables highlight the month-by-month results for the five tested 

methods proposed in 3.3.1 and 3.3.2, using three prediction horizons (15-

min, 30-min and 1-hr), as discussed throughout this thesis. 

Table 19 presents the short-term irradiance forecast results for an 

ensemble of five types of forecast methods for 15-min prediction 

intervals. The average monthly normalized root mean square errors 

(nRMSEs) are based on a central meteorological station in Singapore 

(station “V” in Figure 75) as validation site. In bold are lowest average 

errors among the tested forecasts within a particular month. In italics, the 

average one-year errors per forecast type are also shown. The month-by-

month average total daily irradiation is also presented for the same 

validation station, with the highest irradiation month shown in red and the 

lowest in blue.  

Table 19: Average monthly 15-min normalized root mean square errors 

(nRMSEs) for five short-term solar irradiance forecasting methods for a 

centrally located weather station in Singapore (NOBRE et al., 2015 

(submitted)). 

 
 

The proposed Hybrid method achieved the lowest annual average 

nRMSE (29.0%), followed by ARIMA (30.0%). It can also be seen that 

the month with the highest levels of irradiation (September 2014, with an 
equivalent average total daily irradiation of 4.90 kWh/m2) produced the 

lowest errors, whereas December 2014 had the highest errors in the study 

(December is one of the wettest monsoon months, with 2014 having had 

an equivalent average total daily irradiation of only 3.45 kWh/m2). Even 

though conditions of total cloud coverage (“washout” days) could bring 
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down absolute daily forecasting errors, these months are still 

characterized by many sudden storm conditions, thus leading to higher 

error values for the entire month. 

Taking a 30-min forecasting horizon into account (see Table 20), 

the Hybrid model also displayed the lowest nRMSEs at 30.7% for the 

entire period of study among the five studied methods. For the 30-min 

tests, the Persistence forecast was the model with the second lowest errors 

at 32.3%. In February 2015, Persistence even slightly outperformed the 

Hybrid forecast.  

Table 20: Average monthly 30-min normalized root mean square errors 

(nRMSEs) for five short-term solar irradiance forecasting methods for a 

centrally located weather station in Singapore (NOBRE et al., 2015 

(submitted)). 

 
 

Table 21 presents the month-by-month improvement of the Hybrid 

model over the Persistence in absolute percentage points on the RMSE 

and also as per metric “s” shown in Equation 16 for the months under 

evaluation. A “s” value of zero equals a certain forecast method is as 

effective as the Persistence method.  

Taking sunny and cloudy conditions into account, for the months 

of September and December 2014, respectively, Figure 89 highlights the 

mean average percentage errors (MAPEs) of the ARIMA forecasts for a 

15-min horizon window for the studied months. As expected, for the 

sunny month, with clearer skies and less storms present, the majority of 

the forecasting errors occurred at low values, which conversely peaks for 

the cloudy month, where 20% occurrences of the MAPE values took place 

above 50% of error (versus 6-7% occurrences for the sunny month). 

Approaching storms tend to generate large deviations in the forecasts, 

with prediction errors greater than 100% in certain cases, which naturally 
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is an area of concern to grid operators. As shown earlier in Figure 88, one 

of the goals of the Hybrid model had been to curtail large errors at 

instances of approaching storms, something that the ARIMA and 

Persistence models fail to do.  

Table 21: Improvement of the proposed Hybrid method versus the 

Persistence method (as baseline) on a month-by-month basis, using both 

absolute errors percentage improvement but also the performance metric 

“s” (NOBRE et al., 2015 (submitted)). 

 
 

 

Figure 89: Mean average percentage errors (MAPE) for ARIMA 15-min 

forecasts for a sunny and a cloudy month (NOBRE et al., 2015 (submitted)). 
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Finally, the average monthly, 1-hr forecast horizon, normalized 

root mean square errors are shown in Table 22.  

Table 22: Average monthly 1-hr normalized root mean square errors 

(nRMSEs) for five solar irradiance forecasting methods for a central 

weather station in Singapore (NOBRE et al., 2015 (submitted)). 

 
 

Here, the proposed Hybrid still outperformed the Persistence 

method (by ~1% in absolute nRMSE terms), however, an ANN 

considerably reduced errors in a longer horizon setting. This could be 

explained by the fact that once storms arrive in Singapore, they tend to 

move very fast through the island. This means the irradiance smoothing 

effect in 1-hr average terms reduces the storm’s “irradiance drop” impact. 

Explaining differently: the Hybrid method promotes reduction of errors 

in one/two forecast windows after storm arrival. When 1-hr averages are 

used, the Hybrid code does not contribute much to error reduction since 

the peaks of irradiation variation are smoothened out throughout the 

two/four forecast windows, for 15-/30-min, respectively, within a 1-hr 

time step. 

Notwithstanding the better performance of ANNs in a 1-hr setting, 

the Hybrid algorithm still proved to be efficient in a short-term setting, 

especially for the same energy trading interval in Singapore (i.e. 30-min). 

As presented in previous sections, rain cloud motion in Singapore 

could present challenging conditions for irradiance modeling and 

forecasting in the relatively small area of interest. In order to achieve a 

good accuracy for short-term forecast horizons, time horizon 
investigations as well as station-pairing relationships are crucial. 
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4.1.3 Case study when extending the sensing network 

In subsection 3.3.4, it was proposed that six new ground-measuring 

meteorological stations are deployed at strategic positions, even farther 

than existing sites and towards the outside contours of Singapore. Two of 

such stations were deployed as the start point of the expansion works. 

They allow in a first stage the demonstration of the intent of the extension 

initiative and justifications to such an investment. 

 Figure 90 is a Doppler image registered on the 30th May 2015 when 

a storm approached Singapore from its East-Southeast border. Under the 

former network perimeter of meteorological stations, delineated by the 

brown belt superimposed onto Figure 90, station #405 is the first “line of 

defense” in detecting changing weather conditions. GHI declined on that 

day to 100 W/m2 at 14:50. The new station in #426, on the other hand, 

already had diminishing GHI values at 14:30, 20-min before lowering 

levels at station #405. Additionally, at 14:20, the air pressure trigger in 

#426 had already detected the approaching storm, which straight-forward 

helps forecasting efforts ahead at the particular station. 

 

 

Figure 90: Approaching storm originating from E-SE on 30th May 2015, first 

captured by new expansion station #426 at Changi Bay (NOBRE et al., 2015 

(in preparation)). 

 As a reference, station #426 is ~7 km apart from its nearest station 

at #405. The next station, #407, is further away (~12 km), but also 

experienced improvements in short-term forecasting thanks to the new 
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presence of the superstation at the ocean line in Changi Bay. In fact, 

several HDB residential blocks have PV systems at or near the location 

in #407, which would, under the normal network architecture, suffer from 

forecasting error peaks with the storm arrival. 

 Table 23 shows the 15-min and 30-min Persistence forecasting for 

stations #405 and #407 without any assistance from the new station. The 

table then highlights the new and lower errors when using knowledge 

ahead of time provided by station #426. 

Table 23: Daily nRMSE results for selected case studies with a storm 

approaching from E-SE, with and without the use of a new deployed 

superstation (NOBRE et al., 2015 (in preparation)). 

Station/Forecast Horizon Persistence 

[nRMSE] 

Hybrid 

[nRMSE] 

Uncertainty 

Reduction 

[% abs] 

#405/15-min 22.2% 20.2% -2.0% 
#405/30-min 24.2% 21.0% -3.2% 
#407/15-min 21.6% 19.0% -2.6% 
#407/30-min 25.2% 21.1% -4.1% 

 

Also as previously discussed, the importance of the expansion of 

the network of stations in Singapore is further justified by the fact that 

massive volumes of PV systems might be embedded in regions currently 

outside of the maximum reach of the existing weather stations. For the 

example shown here, an industrial area (“Industry 4”) benefited from the 

existence of station #426. Results have shown give enough evidence to 

stakeholders (e.g. grid operators) that the investment on extra stations is 

needed for further error curtailment in an area of interest. 
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4.1.4 Cloud vectoring demonstration and functionality 

It was intuitive to derive that by extending the network of remote 

sensing stations, that a) a longer reach on weather knowledge would be 

achieved and b) that areas of Singapore not covered by the maximum 

range of superstations could be addressed. The expansion project for the 

stations is a “low hanging fruit”, which can be easily realized with further 

hardware investments and use of the existing system software backbone 

infrastructure. 

However, extending a network addresses primarily areas of the 

island not previously covered. With the sky camera network deployment, 

it was intended that new insights into the Singapore climatic conditions 

are brought to light.  

 Here, two case studies are presented. The first one sees a moving 

Sumatra squall on the 1st July 2015 entering Singapore from the W-NW 

border. The sequence of Doppler images covering a period of 1.5 hours 

is shown in Figure 91. Via the sky camera network, selecting eight 

cameras at specific locations of the island, the vector directions were 

obtained for 1-min resolution and averaged to match the same interval as 

the Doppler images. 

 

 

Figure 91: Storm progression through Singapore, with resultant vector 

taking eight sky cameras into account for predominant cloud direction path 

(NOBRE et al., 2015 (in preparation)). 
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The resultant vector direction for every interval between Doppler 

images yielded the yellow arrows shown in Figure 91. These directions 

showed a good agreement with the storm progression. Such findings 

assist knowledge gaining of cloud physics for the country. 

The second case study also tackles the progression of a Sumatra 

squall occurring on the 4th July 2015. Figure 92 shows the squall Doppler 

radar sequence at the bottom of the image. The eight sky cameras vector 

directions are plotted at an approximate location where the devices are 

installed in the country. 

 

 

Figure 92: Storm progression through Singapore, with resultant vectors 

from eight sky cameras (NOBRE et al., 2015 (in preparation)). 

In Figure 92, a good agreement is seen between actual storm 

traveling path (as per Doppler radar images, indicating a West-East 

direction), with actual cloud vectoring information (also primarily 

showing an Eastwards and South-eastwards path. This particular finding 

is an indication that information from one location of the island can serve 

to the benefit of other locations, even several kilometers away. Cloud 

vectoring can also potentially assist in future investigations on haze 

arrival and dissipation. 
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4.2 POWER CONVERSION SIMULATION RESULTS 

4.2.1 Results on factors affecting PV power output 

The following are results achieved while investigating five heavy 

influencers to PV system power output. 

[A] Test #1: System modeling 

A previous work by Mellit and Pavan (MELLIT and PAVAN, 

2010) suggested that an arbitrary value of performance ratio could be used 

in order to promote modeling of the PV power after obtaining the forecast 

values for irradiance. As seen from results next, testing the parameters 

over five challenges described in subsection 3.4.2, this proves to be an 

over-simplification for a diverse fleet of PV systems and environment. 

In Test #1, which deals with the PV modeling selection, Equations 

9-11 were used, modeling the PV system power output first when GHI 

and Tamb are the only known parameters. A nRMSE of 3.8% was achieved 

for data from March 2010 for a then new crystalline wafer-based system 

in Singapore (see Table 24, also displaying all other tests executed). 

When testing the second model, with Gmod and Tmod known, a more 

refined fit was achieved, with the lowest nRMSE of the three tested 

models, at 1.9%. The estimation via an arbitrary performance ratio (here 

0.80) generates the highest errors, with nRMSE of 5.4%. The use of such 

a generic value of PR has not only a higher error but would also influence 

other tests discussed next. 

Table 24: AC power output conversion model normalized root mean square 

errors according to the five test sequences proposed in the investigations 

(NOBRE et al., 2015 (submitted)). 
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[B] Test #2: Temperature losses 

Continuing the tests, a typical rooftop mounting Ross coefficient 

of γ = 0.023ºCm2W-1 was chosen (Test #2), based on (YE et al., 2013) as 

the simulation baseline. For a concrete rooftop, the PV power output 

modeling error showed a nRMSE of 4.6%. When assuming the same 

value of γ but using a metal rooftop-installed PV system, the nRMSE 

further increases to 9.4%, highlighting the importance of knowing system 

details to be considered during power output modeling. The heating 

profile for the two PV systems is shown in Figure 93 (left), where visually 

one can attest from the time series that the metal rooftop causes a higher 

module temperature when compared to the concrete one, which is 

estimated, for the given day in the example, as being ~15% higher for the 

metal rooftop on average.  

The variation of module against ambient temperature with regards 

to irradiance on module plane at the sites allows the plotting of the graph 

on Figure 93 (right). The slope of the linear fit indicates the value for the 

Ross coefficient, here for March 2010, 0.032ºCm2W-1 and 0.025ºCm2W-

1, for metal and concrete roofs, respectively. Roof color was not one of 

the aspects addressed in the investigations. The two test sites used for the 

analysis are ~2 km apart with nearly identical irradiation patterns for the 

period of study. Models used were for Gmod and Tmod known. 

 

 

Figure 93: Module temperatures time series at two PV systems ~2 km apart 

(top left). The modules on a metal rooftop are in average ~15% hotter than 

the concrete one (bottom left). The temperature difference between module 

and ambient temperatures on the metal rooftop are compared against a 

system on a concrete rooftop (right) (NOBRE et al., 2015 (submitted)). 
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[C] Test #3: Shading influences 

Test #3 discusses shading in a densely-built environment as 

commonly found in Singapore, which can also lead to considerable 

deviations in the PV power conversion. In Figure 94 (left), the normalized 

power AC output of two PV systems on the same building are plotted, 

with one section of the system clearly shaded in the mid-afternoon. Figure 

94 (right) portrays the readings of two irradiance sensors at the shaded 

and unshaded locations averaged for an entire year. The afternoon 

shading is clearly seen, but also in other parts of the day a lower level of 

irradiance is detected at the canopy location. All in all, irradiation at the 

shaded canopy is 27% lower than on the top of the building. The 

irradiance reduction experienced in this case study was observed to curtail 

power output of up to 90%. This type of shading is usually classified as 

“hard shading”. For “soft shading”, generally cast by trees, chimneys, 

elevator shafts or other smaller objects, which leave parts of the system 

still exposed to the full sun, losses can amount to anywhere between 30% 

and 60%, based on own measurement data in Singapore. Data simulated 

is from March 2015, for an already 5-year old system at the hospital 

complex discussed (system #115). The nRMSE for the unshaded system 

was higher when compared to a newer system. Taking the shaded section 

into account, the error climbs to 32.1%. The model used for Test #3 

assumed Gmod and Tmod known. 

 

 

Figure 94: Normalized power AC output sections of a shaded and unshaded 

PV systems (left). One year data for two irradiance sensors are shown for 

both conditions investigated (NOBRE et al., 2015 (submitted)). 
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[D] Test #4: Long-term degradation 

In Test #4, data from a PV system in its early months after 

deployment was used (March 2010, year one of operations) to evaluate 

the power output simulation from that period in time. The nRMSE was 

found to be 3.4%, with Gmod and Tmod known, with a PR for the month of 

81.2%. When simulating the same system five years later, nRMSE was 

calculated at 9.0%, with PR for the month at 78.1%. The degradation 

trend for the system is shown in Figure 95 (left). It is important to note 

that the PV system used for this example obviously has experienced a 

long-term performance decay of approximately -1.0% per annum, i.e. 

above levels typically reported in literature (-0.5%, as per (JORDAN and 

KURTZ, 2013)). Figure 95 (right) shows the normalized power AC 

output of the system on a sunny day in 2010 and a similar day in 2015. 

The reduction in power generation potential of the system can be clearly 

seen. 

 

 

Figure 95: 5-year period of a PV system’s daily performance ratios (left). 

The power output of a single typical day five years apart also shows the 

noticeable system degradation (NOBRE et al., 2015 (submitted)). 

On the topic of system degradation, the author has worked on the 

benchmarking of several PV systems in Singapore, which includes the 

reporting of advanced decay of systems’ performance ratios, such as the 

one shown in Figure 96, which belongs to the heavily soiled flat 

installation in Figure 60.  



 

197 

 

Figure 96: Recorded 5-year degradation records for the PV system shown in 

Figure 60, where advanced soiling has been detected (NOBRE et al., 2015 (in 

preparation)). 

[E] Test #5: Irradiance availability due to air pollution  

The final test describes the influence of air pollution levels as 

object of study, with Gmod and Tmod known (Test #5). Figure 97 (left) plots 

the normalized power AC output of a crystalline wafer-based PV system 

on an extremely hazy day (pollutant standards index, PSI > 200) in June 

2013. The PV power conversion works well nonetheless (nRMSE = 2.4%, 

nRMSE for clear skies = 2.5%), as from the perspective of the simulation 

model, the haze acts simply as a cloudy day. This would not be the case 

if the simulated PV system were a thin-film technology one, as 

demonstrated in (LIU et al., 2014b), since the haze affects the spectrum 

of the irradiation in a detrimental way for those systems. Figure 97 (right) 

shows the ratio for power AC between an air-polluted versus a clear sky 

day. The days are 30 days apart so that the degradation of the system does 

not play an influencing role. For the two days compared, a reduction in 

power of circa 25% can be seen. 
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Figure 97: PV system normalized power AC output on a day with clean skies 

(PSI < 50) and with polluted skies (PSI > 200) (left). The hazy sky day incurs 

~25% power output for the PV system (NOBRE et al., 2015 (submitted)). 

PV power conversion forecasting guidelines 

Figure 98 shows the Persistence forecasting being utilized together 

with the PV power conversion modeling as discussed in section 5.1 of this 

work (here, Gmod and Tmod known are used). When not considering the 

system aging aspect into account, the power output modeling error is 

further transmitted to the power forecasting. The five tests discussed in 

sections 4.2 and 5.1 are repeated, taking a simplistic Persistence 

forecasting into account, with results shown in Table 6. 

Notably, when Tests #1 through #4 are shown to induce power 

conversion errors, these are further transferred to the overall system level 

and possibly aggravate the effects from assessing what the level of PV 

power produced at the present moment in time will be, as well as for a 

country’s fleet power output. In that sense, older PV systems or systems 

installed on metal rooftops seem to especially cause overestimations of 

the amount of power to be generated. 

On the other hand, taking the fact that other larger degradation 

levels have been reported in Singapore likely due to soiling accumulation 

for installations at shallow tilt angles (NOBRE et al., 2013), forecasting 

power output for solar systems in this tropical environment could further 

be over-estimated, if installations follow the common belief of matching 

their tilt angles to the local latitude, versus adopting a minimum 10-degree 

tilt angle to promote the so called self-cleaning effect from rain. 
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Figure 98: Simulated versus measured power DC for a 15 kWp PV system 

during its first year of operation (top left) and five years later (top right). A 

larger error was observed for the now older PV system when a simple 

Persistence forecast was performed (NOBRE et al., 2015 (submitted)).  

Important to note when forecasting under hazy conditions is that 

PV power conversion and forecasting does not get considerably affected 

when systems are made of crystalline silicon technologies; however, grid 

operators ought to be aware that a general reduction of PV power 

generation in the absence of regular clouds in the sky, as shown in Figure 

97 (right). 

Summarizing, Table 25 aims to provide guidelines and execution 

steps for both power conversion and power forecasting for a PV system 
in a tropical setting, not considering the relatively low wind influence. 
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Table 25: Power conversion guidelines for a PV system in a tropical 

environment assuming low wind speeds (NOBRE et al., 2015 (submitted)). 

 
 

Although the essence of this investigation was carried out in 

tropical Singapore, the systematic can be adjusted to other weather 

conditions. For a temperate climate, the metal/concrete rooftop dynamic 

would play a different role due to different ambient temperature and wind 

conditions, also from the fact that other types of mounting system 

situations could be found, such as ground-mounted installations in non-

area-constraint countries. Similarly, PV systems in open areas would not 

face the challenging shading conditions found in an urban context. 

Thirdly, degradation rates, an important topic of study for the long-term 

stability of PV installations, are likely to be less influential in temperate 

locations, with milder weather and steeper tilt angles of installation, 

which facilitate a better cleaning effect of the panels. Finally, the 

occasional situation of the haze pollution in Singapore could also be of 

relevance elsewhere, with varying polluting agents (e.g. smog, particles 

from construction/transportation, sandstorms), and possibly different 

duration, intensity, seasonality, and movement patterns.  
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4.2.2 Air pollution investigation findings 

As the topic of air pollution was perceived to be of interest for the 

future planning of the grid in Singapore due to seasonal tendencies of haze 

episodes, this topic was further explored during the past years within the 

course of this thesis. 

Figure 99 shows examples of global horizontal irradiance time 

series for three weather conditions – a sunny, a rainy and a cloudy day in 

Singapore, respectively, and the progression of the data points being 

eliminated through the three proposed filters in 3.4.3. 

 

 

Figure 99: Filter performance progression for three different weather 

conditions (NOBRE et al., 2015 (accepted)). 
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Figure 100 shows one-minute averaged time steps for post-filtered 

irradiance values (as black dots) taking into account June data only, as 

well as the curve fits optimized for the available data points (orange lines). 

As an example, for all days categorized with PSI values below 50, the 

calculated average solar irradiance day indicated a total irradiation of 6.70 

kWh/m2. The modeled clear sky irradiance for all June days is plotted as 

a guide to the eyes (red dotted line). The areas under the curve fits 

represent the calculated irradiation found for the four selected air 

pollution levels. The readings used are for global horizontal irradiances 

recorded at the SERIS meteorological station using a calibrated 

pyranometer as a measurement device.  

 

 

Figure 100: Post-filtered resulting daily irradiance averages for four varying 

levels of air pollution (NOBRE et al., 2015 (accepted)). 
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As values of air pollution increase, irradiation at ground level is 

reduced. Starting from the second PSI bin (50-75), irradiation levels 

dropped by 3.3% against the modeled clear sky days, followed by 13.5% 

for the third PSI bin (75-100) and finally by 14.9% for all days with PSI 

above 100. Figure 101 summarizes these findings not only for the case of 

the measurements by a pyranometer, but also with the use of a silicon 

sensor at the same meteorological station. As mentioned earlier in this 

thesis, a reduction of irradiation of ~5% due to the narrower spectral range 

of the silicon sensor was expected. Loss of irradiation with an increase of 

air pollution showed similar trends to the results assessed with the use of 

a pyranometer. A linear fit is included as a guide to the eye. 

 

 

Figure 101: Calculated typical solar irradiation day (in kWh/m2) using June 

data for several ranges of the Pollutant Standards Index (PSI). Readings for 

a pyranometer and from a silicon sensor are shown (NOBRE et al., 2015 

(accepted)). 

The irradiation level for the exceptional day with hazy but 
cloudless conditions (PSI = 109, on 24 June 2013, shown in Figure 62) is 

also plotted in Figure 101. Irradiance measurements carry an uncertainty 

of anywhere between 2% and 5%, depending on the sensor type used in 
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the analysis, hence that day’s readings are within the uncertainty of the 

analysis. 

Table 26 shows the in-plane irradiation for ten PV systems during 

the June clear sky day conditions, following the same methodology 

carried out earlier for Figure 100. Irradiation losses between clear sky 

conditions and the hazy day of 24 June 2013 ranged between 13% and 

22%. These variations likely depend on irradiation values, as well as haze 

levels throughout Singapore, which tend to vary up to 20 PSI points 

within the five locations monitored by NEA. Also, tilt angles and 

orientations of the in-plane irradiation sensors would yield slight 

differences for the given June day, even for a low latitude location such 

as Singapore (1N of the Equator). 

Table 26: Daily total irradiation on module plane, PV systems’ yield and 

performance ratio (PR) for clear sky conditions (“clear”) as per method 

described in this work (combination of days with PSI < 50) and during a 

strong hazy conditions day (24th June 2013, “hazy”). PV systems are located 

in several parts of Singapore and installed at different tilt angles and 

azimuths (NOBRE et al., 2015 (accepted)). 

 
 

The specific yields (in kWh/kWp per day) for the ten PV systems 

under evaluation are also shown in Table 26. Derived energy yield losses 

of thin-film based PV systems due to haze were, on average, some 4% 

(absolute) lower than losses for crystalline silicon wafer-based PV 

systems. In contrast, the performance ratio for the systems shows a slight 

increase of PR for the crystalline silicon systems, while the thin-film 

systems suffer from an average drop of nearly 5%. Such a mechanism 
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was investigated by Liu et al. (LIU et al., 2014a), demonstrating that a 

spectrum shift during the haze season is more detrimental to thin-film 

based PV systems in Singapore than for crystalline silicon based ones. Ye 

et al. (JIAYING et al., 2014) reported similar effects but for single 

modules of four thin-film PV technologies under assessment in 

Singapore. Rüther and Livingstone (RÜTHER and LIVINGSTONE, 

1995) and Rüther et al. (RÜTHER et al., 2002) have also previously 

reported on spectral effects on the performance of thin-film silicon PV 

devices, showing the beneficial effects of blue-rich content of sunlight, 

emphasizing the fact that due to their narrower spectral range, thin-film 

PV devices are much more sensitive to spectral shifts in the content of 

sunlight than bulk crystalline silicon devices. Dirnberger et al. 

(DIRNBERGER et al., 2015) elaborated on the spectral response of 

several PV technologies although the air pollution situation was not part 

of the study. 

One other impact to analyze is the change in ambient and module 

temperatures, knowing that the reduction of PV power output through 

high module temperatures is the single-largest loss factor for PV systems 

in Singapore (YE et al., 2013). Results are shown in Table 27. In spite of 

a slight increase in ambient temperature recorded during the hazy day, 

ambient temperatures in general throughout the various sites still fell 

within the 2-sigma standard deviation zone from the average temperature 

found on a clear sky day. It is noticed, however, that the module 

temperatures were lower on hazy days for both crystalline silicon wafer 

based and thin-film based systems when compared to temperatures on a 

clear sky day. A lower total irradiation on the modules results in cooler 

PV cells. This should particularly be the case for red-rich spectra as blue 

photons contribute stronger to thermalization losses in the PV cells, i.e. a 

smaller fraction of their energy is used for the photovoltaic effect, and 

hence they contribute more strongly to heating up the module. Such 

variations would affect voltage of PV devices, but the energy amounts 

involved in this situation are, however, quite small and of a second order 

of influence, with the effect of the higher direct irradiance of clear days 

expected to be the dominating effect. Therefore, impacts on the irradiance 

levels which directly affect current driven in the photovoltaic systems 

would have a predominant contribution level to the impact of haze on the 

yield of PV systems. 

To conclude the haze investigations for PV applications in 

Singapore, the technical assessment of its impact was merged with 

financial implications for a future substantial fleet of systems in the 

country. Table 28 presents some of the assumptions and findings derived 
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from the techno-financial model investigated, with a 3 GWp fleet of 

systems losing near 120 GWh and 26 million SGD in revenue during a 

10-day haze episode which mimics the June 2013 haze crisis. 

Table 27: Daily total ambient and module temperature averages for clear 

sky conditions (NOBRE et al., 2015 (accepted)). 

 

Table 28: Preliminary findings on loss of revenue to a future fleet of PV 

systems in Singapore during a 10-day haze episode which mimics the June 

2013 crisis (NOBRE et al., 2015 (in preparation)). 

Parameter 2014 2020 2030 

PV systems deployed [MWp] 33 650 3,000 

Crystalline silicon share [%] 90% 95% 97% 

System yield [kWh/kWp] 1,100 1,112 1,132 

Electricity tariff [SGD/kWh] 0.243 0.200 0.232 

Energy loss in haze [GWh] ~1.5 ~26.5 ~119.3 

Energy loss in haze [MSGD] ~1 ~4.5 ~25.8 

 

The investigations on the effects of haze on PV systems in 

Singapore presented throughout this thesis have been published as a 

contribution in the IEEE’s “Journal of Photovoltaics” (LIU et al., 2014b), 

see 6. Work on aspects of irradiation attenuation due to haze and loss of 

revenue in PV applications are part of the outcome of investigations 

within this thesis, with the paper on irradiation reduction due to air 

pollution accepted in the journal “Renewable Energy”.  
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4.2.3 Results on up-scaling exercises 

As 90-95% of the installed capacity of PV systems in Singapore is 

of crystalline wafer-based technology, the up-scaling routine tested 

within the thesis focused on those systems. Via the National Solar 

Repository database, system size, age, tilt, orientation, roof material, 

system surroundings (shading potentials), etc. are obtained and used in 

the up-scaling routine, as presented in Table 15. 

Individual results for the ten systems under investigation, 

accounting for ~10% of the volume of installations in Singapore, can be 

seen in Table 29. 

Table 29: Up-scaling routine executed for March 2015 (NOBRE et al., 2015 

(in preparation)). 

System 

# 

Gmod 

[kWh/m2] 
YAC-0 

[kWh/kWp] 
YAC-1 

[kWh/kWp] 
YAC-2 

[kWh/kWp] 
MAPE-1 

[%] 
MAPE-2 

[%] 

#901 138.5 3.14 3.27 3.57 13.8% 4.1% 

#902 147.0 3.68 3.66 3.79 3.0% 0.6% 

#903 151.3 3.70 3.72 3.90 5.5% 0.5% 

#904 143.0 3.61 3.70 3.69 2.2% 2.4% 

#905 147.7 3.56 3.56 3.81 6.9% 0.1% 

#906 150.6 3.86 3.67 3.89 0.7% 4.9% 

#907 147.7 2.43 2.66 3.81 56.7% 9.3% 

#908 151.3 4.00 3.97 3.90 2.4% 0.7% 

#909 136.2 2.97 3.12 3.51 18.5% 5.2% 

#910 135.0 2.07 2.27 3.48 68.6% 9.8% 

Avg. 144.8 3.30 3.36 3.74 17.8% 3.8% 

 

 The system yields via the method which utilizes Equations 9-11 

(YAC-1) proved to be considerably more accurate than the coarse PR = 

0.80 method (YAC-2), when compared to the actual registered yields at 

sites (YAC-0), with an average MAPE of 3.8% versus 17.8%. 

An example of severe errors with the PR = 0.80 method are seen 

in systems #907 (severely shaded) and #910 (severely soiled). These two 

systems alone highlight areas of focus of this thesis of PV system 

modeling concerns. 

New and professionally installed systems such as #904 and #908 

also give an indication that such devices, when new, can indeed be 

estimated as having a performance ratio of 80%, however, with little time 
elapsed, start to deviate considerably from benchmark results. 

Also worth noting is the average system yield for the month, 3.30 

kWh/kWp per day, with a March Gmod resource average of 144.8 kWh/m2. 

This is translated to a PR of only ~71%, once again highlighting that there 
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is room for improvement in system performance in Singapore towards 

international benchmark levels above 80%. 

Simulating a single PV system on a regular or detailed basis can 

ultimately create minimum errors in such exercises, as the user gets more 

and more familiar with the system’s characteristics and behavior as the 

modeling repetitions continue. However, when modeling a fleet of 

systems, a few challenges that occur are volume of the fleet, correctness 

of the information gathered from a system and sensor accuracy & 

maintenance practices for the benchmarking of the validation.  

The National Solar Repository of Singapore allows for the tapping 

of further PV data for future exercises. Although this data is not as precise 

as other research-grade datasets available, also not with the same time 

resolution of 1-min, monthly (and daily) energy readings allow for up-

scaling exercises in terms of how the average output of a considerable 

amount of systems in the country’s PV fleet would be. 

 Extrapolating to 100% of the PV facilities on a country-level could 

give utility operators in Singapore initial indication on PV system output 

on an island level for at least monthly intervals (at first). It is expected 

that such method is still more accurate than the one shown in Figure 22 

for Germany (SMA, 2013a), as the ratio of empirical to up-scaled data for 

the pool of systems in Singapore is greater than for the European country. 

Such products can today be run on a monthly basis (for 25% of systems 

up-scaled to 100%, a ratio of 1:4), and on a daily basis only for a ratio of 

~1:20. Dilution of the initiative database capabilities is continuous, with 

more systems deployed and NSR not able to add systems fast enough to 

match the solar market growth rates. 

Finally, with a good up-scaling routine derived via the 

investigations of this thesis, the amount of total solar electricity produced 

in Singapore for a given month can be better estimated. For the case study 

addressed, it would have meant that monthly solar PV output would have 

been 3.38 GWh (based on the recorded monthly yield of 3.30 kWh/kWp 

per day and a country installed capacity of 33 MWp). Encouraging is that 

even without the readings from the ten PV systems presented, only with 

the available irradiance network in the country plus database information 

on system characteristics, one would have been able to calculate a 

monthly energy generation potential of 3.48 GWh, slightly 

overestimating it by a couple percentage points. 
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5. CONCLUSIONS 

 

5.1 ON THE MAIN FINDINGS OF THIS THESIS 

The following set of conclusions can be drawn from the 

investigations surrounding the works of this thesis. 

5.1.1 On short-term forecasting for the tropics 

In this thesis, methods for short-term irradiance forecasting were 

benchmarked. Also included was the development of a novel method to 

reduce prediction errors, based on weather observations and readings 

from a remote sensing network. Improvements in short-term irradiance 

forecasting were achieved for three severe weather conditions, namely: 

storms, washout days and haze days. 

The storm detection triggers by far provided the best enhancement 

in the short-term forecasts (for 15-min and 30-min horizons), with 

nRMSE of the proposed Hybrid method reducing absolute errors by an 

average of 10.0% versus a baseline Persistence forecasting approach. 

Stormy days are good targets for prediction improvements due to the 

sudden nature of weather phenomena in the tropics and “over-reliance” 

of stochastic methods in past data. 

The novel Hybrid algorithm also addressed complete “washout” 

days (i.e. with continuous rainfall) where it was proposed the use of the 

Persistence forecasting method throughout. The third severe 

meteorological condition was haze from transboundary forest fires. A 

further recommendation resulting from the findings is that the Persistence 

forecasting method be also used during periods of intense air pollution, 

simplifying forecasting methodologies. 

The new developed algorithm now runs live at the SERIS’ PV 

System Monitoring Laboratory. It assists the team in understanding local 

weather as well as observing forecasting error behavior (see Figure 102 

for a developed user interface). 

The work presented here was designed for a location at the center 

of the sensor network (center of the island). The achieved uncertainty 

reduction likely would not be the same for peripheral areas, which would 

be at the mercy of the arrival of sudden storms with little or no warning. 

Therefore, areas of future improvement were addressed via a remote 

sensing network extension. It was demonstrated that such decision would 

help reduce forecasting errors at other parts of the island nearer to the sea. 

The network expansion was underway at the closure of this thesis. 
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Furthermore, the use of sky cameras for cloud motion tracking was 

shown to assist in detection and modeling of cloud patterns and thus help 

to further improve irradiance forecasting. Sky cameras would also allow 

for a better understanding of cloud physics, as well as assist future local 

scientists in the development of new forecasting algorithms for short-term 

purposes. 

 

 

Figure 102: Live map (top left of each image sequence, here 15-min), 

including forecasting (top right), error (bottom left) and Doppler radar 

(bottom right) developed within the works of this thesis. 
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The increasing penetration levels with variable solar PV in electric 

power systems worldwide will require both short and long-term 

prediction forecasts of the irradiance in order to assist the balancing of 

energy generation from renewables and fossil-fuel-based sources, as well 

as the proper conversion of irradiance forecasts into actual PV power 

generation readily useable by grid-operators. In Singapore, as an example 

of a liberalized electricity market in a tropical location, energy trading is 

carried out at 30-min intervals, whose system would benefit most from 

forecasts similar to the ones presented in this work. It also assists a future 

energy market where solar photovoltaics play a larger role, with 

contribution levels that may account for as much as 20% of the energy 

needs of the city-state. 

  The discovery of areas of improvement helps delineate a path for 

similar work which could be experienced by other researchers in areas 

with similar weather patterns around the globe. Studying these extreme 

weather conditions as the one shown in Figure 11 and their effect on a 

growing number of solar photovoltaic systems are topics of great interest 

to various power system operators. 

Although Singapore has a relative small area versus countries or 

even states within a certain country, the island does mimic the size of 

major city centers, thus allowing for the replication of similar remote 

sensing networks and meteorological boundary condition assessment as 

the ones discussed in this work, likely for locations with similar climate 

patterns. 

5.1.2 On PV systems power conversion 

Small gains in forecast accuracy, when obtained, can be quickly 

wiped out when using only a rough power conversion methodology, 

typical of present analyses in the field. Challenges in PV power 

generation and forecasting for a tropical, densely-built environment in 

Singapore were introduced, tested and verified, demonstrating the 

significant errors introduced when they are not considered.  

Based on these findings, guidelines were given to facilitate better 

power simulation and forecasting in the future. Although this thesis 

conducted tests at a tropical location, the parameters considered can be 

adjusted according to other weather conditions at hand. 
For air pollution aspects, i.e. anthropogenic-induced haze for the 

case of Singapore, global horizontal irradiation was assessed via a series 

of proposed filters in order to gauge the reduction of irradiation at ground 

level caused by haze, primarily originating from forest and agricultural 
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land clearing fires mostly in Sumatra (Indonesia). Blockage of sunlight 

due to haze was investigated in neighboring Singapore, 150-300 km away 

from the majority of the fire “hot spots”. 

A novel filtering technique was proposed and implemented to 

differentiate between the impacts from clouds and air pollution caused by 

haze on the reduction on irradiance levels on the ground. Parameters used 

in the filtering included relative humidity and clear sky indices in order 

to sequentially remove the effects of rain and clouds on irradiation levels. 

A third filter was proposed in order to eliminate cloud-edge/enhancement 

effects (over-irradiances) or near cloudy conditions which could fall 

within sensor accuracy levels. 

Global horizontal irradiance level reductions reached ~25% during 

a strong haze episode of June 2013, both when performing the analysis 

with the use of a pyranometer as well as with a crystalline silicon sensor 

that has a narrower spectral range. 

The yield of ten PV systems across Singapore – both of crystalline 

wafer-based and thin-film silicon technologies – was investigated. PV 

systems suffered losses ranging from 15-25% when haze was strong at 

record air pollution indices in the unhealthy range registered for 

Singapore in June 2013. Thin-film technology-based PV installations 

experienced greater losses than crystalline wafer-based systems due to 

spectral effects. Ambient temperatures during haze periods were slightly 

higher than on clear sky days, whereas module temperatures were lower, 

likely due to loss of direct irradiation reaching solar module surfaces. 

With more widespread use of PV generation expected in 

Singapore, a near-future scenario with 1 GWp of deployed installations 

connected to the grid is likely to happen within the next 5-8 years. If major 

haze from Southeast Asia hits the country by then, associated losses, even 

though such episodes have a short duration of a few days or weeks, could 

be considerable. The effect for future scenarios (in 2020 and in 2030) was 

calculated, with losses due to a week’s worth of haze in the millions of 

dollars. Similar effects could take place elsewhere in the world with rising 

air pollution levels affecting the output (and eventually also the 

profitability) of solar PV renewable energy technology. Calculating the 

economic losses due to haze is a natural next step, adding to the ongoing 

argumentation between countries on issues related to reduction of air 

pollution levels, which so far have focused primarily, and naturally, on 

health issues.  

Performance ratios of a-Si based and c-Si based PV systems 

operating in Singapore were found to behave differently during the haze 
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event in June 2013. It was showed that this effect can be attributed to a 

change in the generated short-circuit current resulting from a change in 

the spectral composition of the incident sunlight. During the haze period, 

a red-shift of the spectrum reaching the module planes was observed. This 

shift can be attributed to scattering of light at airborne haze particles. This 

change in the spectral composition negatively impacted a-Si systems, 

which mostly rely on short wavelengths (< 650 nm), but had a slight 

positive effect on c-Si systems which have the best spectral response at 

near-infrared wavelengths (800 to 900 nm). A clear correlation exists 

between the spectral changes and the performance ratios, as was validated 

by measurements as well as statistical analysis. As a rule of thumb, it can 

be concluded that the impact of haze on the PV power output is most 

severe for PV systems employing high-bandgap solar cells (such as a-Si 

solar cells), whereas crystalline silicon modules continue to perform well 

(efficiency-wise) under such conditions.  

When dealing with irradiance forecasting, artificial intelligence 

techniques and time series analysis use past data in order to estimate the 

future irradiance value horizon. For a forecast algorithm, lower irradiance 

values during haze events will simply be perceived as cloudy conditions, 

not up to full expected irradiation levels according to the modeled clear 

sky irradiance bell-shape profile. However, attenuation of irradiation does 

play a role in diminishing maximum output of systems and consequently 

lowers returns on investments. While the latter directly affects system 

owners and investors, the former is a technical component which plays a 

role in future energy pricing and market forces, as limited availability of 

solar PV power output due to haze means more fossil-fuel generation of 

electricity is needed to supply the loads. This is the situation in Singapore, 

which is primarily generating electricity from natural gas power plants.  

While this analysis was performed for Singaporean conditions, it 

is believed that it can also provide useful insight into PV systems 

deployed at other locations where the spectrum seen by the modules is 

affected by haze. For instance, industrial smog in China and forest fire 

smog in Brazil may affect PV system performance in a similar way. 

Quantification of the impact of haze on the solar irradiance could be the 

subject of future works.  
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5.2 LIMITATIONS OF THE WORK 

The findings of this thesis are constrained to the location 

Singapore, a relatively small tropical island in Southeast Asia, with hot 

and humid weather throughout the year, yet a bustling city center with a 

rapidly growing population and expanding PV fleet. Although it is 

expected that several of the findings introduced could be applicable to 

other tropical locations of the world, particular weather phenomena must 

be taken into consideration for individual cases, such as the example of 

rain squalls in Singapore. 

The thesis does not address the impact energy storage might have 

on the future of PV technology and its interface with local grids. 

Advancements of the knowledge ought to be considered for similar works 

in the future, e.g. the use of battery storage solutions likely will impact 

solar technology forecasting efforts and electricity pricing in a few years 

to come. Deployment of storage solutions, such as pumped hydro, likely 

will walk hand in hand with the topic of solar irradiance forecasting in 

future grids’ operation protocols. 
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5.3 SUGGESTIONS FOR FUTURE WORKS 

5.3.1 Hybridization and new forecasting methods 

The use of sky cameras for cloud motion tracking could assist in 

detection and modeling of cloud patterns and thus help to further improve 

irradiance forecasting. Sky cameras would also allow for a better 

understanding of cloud heights, velocities and more refined trigger set-

points as presented in this work. This thesis briefly introduced a local 

network of sky cameras and highlighted some of its potentials, which has 

since then allowed future generations of scientists to commence efforts 

on the enhancement of forecasting methods (see Karthik et al. in 6.1.). 

Extended usage of the Doppler radar images (see Figure 103) is 

another possible area of expansion, since it has a 70 km radius range from 

its home base at Changi Airport, extending well into the ocean and nearby 

islands and peninsular Malaysia. Such range likely would play a role in 

enhancements in intra-day forecasting, e.g. 1-hr to 3-hr ahead of time. 

 

 

Figure 103: Doppler radar animation for 6/Jan/2013. Adapted from (NEA, 

2013).  

The Doppler radar could assist with weather phenomena motion 

such as Sumatra squalls, which come from the West part of Singapore 

traveling eastwards. From Figure 103, it is possible to identify patterns 

reaching the other end of the island in approximately 1 hour (covering a 
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40 km stretch in such a time). That could give a hint on cloud system 

traveling speed. Rain cloud systems seem to have speeds in the order of 

30-60 km/h and heights of approximately 1-2 km. Such topics are worth 

exploring in order to enhance solar irradiance forecasting methods. 

The artificial neural network implemented on this thesis was a 

classic architecture, without exogenous inputs. More complex ANN 

configurations for the location Singapore are being envisioned for future 

doctoral and post-doctoral studies. 

Furthermore, machine vision software for vector assessment can 

be implemented, giving information on system travel orientation and 

velocity (between image frames). Such parameters could eventually a) be 

implemented as part of neural networks inputs or b) overrule other 

forecasting algorithms which have failed to detect the approximation of 

such dynamic weather systems. 

SERIS completed its ground-based irradiance network in 

Singapore in late 2013 and is expanding it, as discussed, during 2015 and 

beyond. The acquisition of greater volumes of weather and PV system 

data start to leverage new solar irradiance forecast methods and PV 

modeling improvements.  

5.3.2 Detailed up-scaling exercises and 3D modeling 

Figure 104 shows a rough geographical concentration of PV 

installations as of the end of 2014 for Singapore. 

 

 

Figure 104: Geographical distribution of the highest concentrations of PV 

systems in Singapore in terms of installed capacity in 2014 (source of data: 

National Solar Repository of Singapore, adapted for this thesis). 
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SERIS has acquired laser data from the surface of Singapore, 

which will power 3D models of existing building feedstock and facilitate 

PV potential analysis, as well as solar resource availability onto rooftops. 

The combination of real-time forecasting, PV power conversion and 

building integrated photovoltaic potential for the country is definitely an 

area of interest for future R&D efforts. 

5.3.3 Replication of remote sensing networks 

Although Singapore has a relative small area versus other countries 

or even states within a certain country, the island mimics the size of major 

city centers, thus allowing for the replication of a similar meteorological 

remote sensing network. A city such as San Francisco in the Unites States 

(see Figure 105) has a small area of around 10x10 km, yet with ~30 MWp 

of solar systems deployed by 2014, such a PV fleet would be able to 

benefit from enhanced PV power output forecasts.  

 

 

Figure 105: City of San Francisco, CA, USA (~10x10 km) and ~30 MWp 

worth of solar PV systems (adapted for this thesis). 

Another such example is the state-capital island of Florianópolis, 

in Brazil, with an area of roughly 2/3 of Singapore, and where PV systems 

are about to become widespread, as PV-generated electricity has recently 

reached grid parity. Such remote sensing networks will allow for a better 

and smoother integration of photovoltaics into an urban setting. Figure 
106 shows the map of Florianópolis and additionally the one for the city 

of Belo Horizonte, another location in Brazil where PV is garnering 

considerable interest, with several systems already deployed. 

Similarly to what was presented in this thesis, remote sensing 

networks could be expanded to cities in an attempt to learn the local 
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weather patterns and prepare these locations for higher levels of 

renewable energy penetration in the future. Table 30 presents some of 

these potential locations around the world. 

 

 

Figure 106: Cities of Belo Horizonte (~20x30 km, left) and Florianópolis 

(~20x50 km, right) (adapted for this thesis). 

Table 30: Cities around the world where remote meteorological sensing 

networks could be deployed. Singapore is shown as a baseline (adapted for 

this thesis). 

City Country Population  
[in million 

inhabitants] 

Area 
[km2] 

Density 
[inhabitants/ 

km2] 

PV 

Volume 
[MWp] 

Florianópolis Brazil 0.42 433 970 <5 

San Francisco USA 0.85 121 7,022 35 

Munich Germany 1.41 310 4,500 50 

Oahu (island) USA 1.42 1,545 632 220 

Belo Horizonte Brazil 2.49 331 7,528 <5 

Santiago Chile 5.15 641 8,470 <5 

Singapore Singapore 5.47 718 7,615 40 

 

 

  



 

219 

5.3.4 Other relevant works 

Another area which remote sensing networks can assist is in solar 

resource mapping. Figure 107 shows the first irradiation map for 

Singapore which was derived from the existence of the network described 

in this thesis. The mapping exercise allowed the gauging of East and 

South parts of Singapore as being the most solar-resource-rich on the 

island. Although the selection of the location of PV systems stumbles on 

the fact that space is an issue in Singapore, for bigger area locations like 

Brazil, or other new tropical market frontiers, the siting of renewable 

energy projects is indeed dependent on local solar resource. The Brazilian 

Solar Atlas is an example of a tool which allows renewable energy project 

location selection, however, many areas of the world still lack either 

satellite models like the Atlas or ground-stations, as the ones shown in 

this thesis for Singapore. 

 

 

Figure 107: Example of irradiance map, which was developed for Singapore 

during the course of this thesis. 

Still on the topic of solar resource mapping and worth noting is that 

not only photovoltaics projects depend on the gauging of irradiation, 

rather PV system performance assessment, asset operations & 

maintenance, and to support other renewable energy projects like solar 

thermal, or concentrating PV. Even other areas of science, such as 

agriculture or medical, have needs in knowing and tapping the local solar 

energy potentials, both on a historical basis, but live, moving forward. 
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