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Abstract 

 

This thesis aims to develop methods to obtain representative building stock models to 

benchmark the energy performance of Brazilian schools considering building-level and 

stock-level perspectives. A literature review regarding the main research gaps in 

operational building performance was carried out, contrasting both building and stock-

level investigation perspectives. Then, an overview of the school building stock in 

Brazil outlined the main characteristics regarding the energy performance, and a 

representative building stock database was composed. The database was used to build a 

top-down building stock model, resulting in a model able to incorporate thermal 

satisfaction of occupants in the benchmarking classification through machine learning. 

Furthermore, a framework was proposed to model representative archetypes through 

entropy and cluster analysis. Artificial Neural Networks were used to model the energy 

benchmarking model. Results showed a manageable bottom-up model of the building 

stock able to perform a reliable representation of the actual stock performance. The 

bottom-up building stock model was used to predict the performance of the building 

stock performance under unseen conditions, i.e. future climatic conditions and different 

scenarios of air-conditioning. Five research articles were written to report the research. 

Conclusions of the thesis outlined the determinant factors that impact the energy 

performance of the school building stock in Brazil and the suitability of both top-down 

and bottom-up models to represent the building stock, according to specific purposes. 

The two stock modelling methods proposed employ different metrics to solve different 

problems. The top-down method provided a single performance scale to include 

occupants’ aspects in buildings operational performance evaluation. The bottom-up 

method is adequate to rate the building performance under standard conditions. Thus, 

through the models proposed it is possible to evaluate further conditions, such as future 

climates, in the buildings-level perspective that potentially impact the energy 

consumption at a stock-level scale. 

 

Keywords: energy benchmarking, building performance analysis, building stock, energy 

efficiency in buildings. 

  



7 

 

Resumo 

 

Esta tese tem como objetivo desenvolver métodos de obtenção de modelos 

representativos do estoque de edificações para aferir o desempenho energético das 

escolas brasileiras, considerando as perspectivas a nível da edificação e a nível do 

estoque. Foi realizada uma revisão da literatura sobre as principais lacunas de pesquisa 

no desempenho operacional de edifícios, comparando as perspectivas de investigação 

encontradas. Em seguida, um panorama do estoque de edificações escolares no Brasil 

proporcionou o delineamento das principais características em relação ao desempenho 

energético e um banco de dados representativo foi composto. O banco de dados foi 

utilizado para construir um modelo de estoque de edificações de top-down, resultando 

em um modelo capaz de incorporar a satisfação térmica dos ocupantes na classificação 

de benchmarking por meio de aprendizado de máquina. Além disso, uma estrutura foi 

proposta para modelar arquétipos representativos por meio de entropia e análise de 

agrupamento. Redes Neurais Artificiais foram usadas para generalizar o modelo de 

benchmarking de energia. Os resultados mostraram um modelo gerenciável bottom-up, 

capaz de realizar uma representação confiável do desempenho real do estoque de 

edificações. O modelo bottom-up do estoque de edificações foi usado para prever o seu 

desempenho do sob condições ainda não vistas, ou seja, condições climáticas futuras e 

diferentes cenários de condicionamento de ar. Cinco artigos foram escritos para relatar a 

pesquisa realizada. As conclusões da tese delinearam os fatores determinantes que 

impactam o desempenho energético do estoque de edificações escolares no Brasil e a 

adequação de ambos os modelos top-down e bottom-up para representar o estoque de 

edificações, de acordo com finalidades específicas. Os dois métodos de modelagem de 

estoque propostos empregam indicadores diferentes para resolver problemas diferentes. 

O método top-down forneceu uma única escala de desempenho para incluir os aspectos 

dos ocupantes na avaliação de desempenho operacional dos edifícios. O método bottom-

up se mostrou adequado para avaliar o desempenho do edifício em condições 

padronizadas. Assim, por meio dos modelos propostos é possível avaliar outras 

condições, como climas futuros, na escala da edificação como indivíduo, e que 

potencialmente impactam o consumo de energia na escala do estoque de edificações. 

 

Palavras-chave: benchmarking energético, análise de desempenho de edificações, 

estoque de edificações, eficiência energética em edificações.  
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Resumo expandido 

 

Introdução 

O estado da arte revela a necessidade de um método robusto e confiável para 

avaliar o desempenho energético operacional dos edifícios existentes e que deva ser 

consistente com o contexto regional. O benchmarking energético é uma prática que 

consiste na comparação do desempenho de uma edificação com o consumo típico da 

tipologia avaliada (o benchmark). Usualmente, o benchmark é obtido por meio de um 

modelo do estoque de edificações e é usado para calcular o desempenho de referência 

que representa do estoque real. Atualmente, existem alguns métodos de modelagem de 

estoque de edificações que podem utilizar tanto abordagens bottom-up (que utilizam 

arquétipos ou edificações de referência que têm seu desempenho obtido por meio de 

simulação computacional) quanto abordagens top-down (que expressam o desempenho 

por meio da evidência e medições). Os arquétipos são úteis para métodos que carecem 

de divulgação de dados de políticas energéticas, enquanto as abordagens top-down 

podem explorar essas informações utilizando análises estatísticas. Apesar de os 

arquétipos serem empregados em métodos mais detalhados, existe uma lacuna em 

avaliar a representatividade dos arquétipos em relação ao estoque existente, ao mesmo 

tempo em que há carência de dados detalhados para proporcionar modelos unicamente 

baseados em análises estatísticas. Portanto, o problema de melhorar o benchmarking de 

energia e a modelagem de estoque de edificações que é abordado nesta tese pode ser 

delineado de acordo com as seguintes questões de pesquisa: Quais são os principais 

fatores que impactam o consumo de energia em edifícios escolares no Brasil? Como os 

aspectos subjetivos (como a satisfação térmica) podem ser considerados nas práticas de 

benchmarking? Como melhorar a representatividade do modelo de estoque de 

edificações? 

Dessa forma, esta tese propõe uma ampla discussão sobre a modelagem de 

estoque de edificações aplicada ao benchmarking no Brasil. Para tal, uma tipologia de 

edifício foi estudada individualmente, uma vez que as características de um edifício 

estão intrinsecamente relacionadas com a sua função social. A tipologia alvo deste 

estudo foi o estoque de edificações escolares no Brasil, especificamente as escolas 

públicas de ensino fundamental e médio – que compreende a educação de pessoas de 

sete a dezessete anos. A justificativa para a seleção deste recorte deveu-se à importância 

da Administração Pública reconhecer a eficiência energética dos seus edifícios. Além 
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disso, há um impacto da função social dessa tipologia de edificações escolares na 

sociedade. Nesse contexto, apenas o consumo de eletricidade foi avaliado. 

 

Objetivos 

Esta tese tem como objetivo geral desenvolver métodos de obtenção de modelos 

representativos do estoque de edificações para aferir o desempenho energético das 

escolas brasileiras, considerando as perspectivas a nível da edificação e a nível do 

estoque de edificações. Os objetivos específicos são: 

• Identificar o estado da arte atual das abordagens de modelagem de estoque 

de edificações e os métodos de benchmarking por meio de revisão da 

literatura, considerando as diferentes perspectivas de análise energética em 

edifícios; 

• Avaliar o estoque de edificações escolares no Brasil por meio de análise 

estatística, correlacionando as principais características do estoque de 

edificações com seu consumo de energia elétrica.  

• Propor um modelo top-down para avaliar o desempenho do edifício-como-

um-todo no método de benchmarking, incluindo abordagens subjetivas 

como a satisfação térmica dos ocupantes; 

• Propor uma estrutura de modelagem de estoque de edificações bottom-up 

que use informações em nível de estoque para aprimorar a 

representatividade dos arquétipos e obter um modelo gerenciável do estoque 

de edificações; 

• Avaliar a aplicabilidade do modelo bottom-up de estoque de edificações e 

por meio da avaliação dos efeitos das mudanças climáticas nos benchmarks 

gerais do estoque de edificações escolares no Brasil, 

 

Método 

Foi realizado um estudo baseado em epidemiologia energético para avaliar a 

distribuição (frequência e padrões) e os fatores determinantes do consumo de energia 

em edifícios escolares no Brasil. Cinco artigos constituem esta tese. O primeiro artigo 

apresentou uma revisão da literatura na qual foram identificadas as principais lacunas 

existentes no estado da arte sobre o tema, utilizando um método de revisão sistemática.  
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O segundo artigo apresentou informações sobre o estoque de edificações 

escolares e uma análise estatística das principais características do consumo de energia. 

O método utilizado para coleta de dados foi aplicação de questionário integrado a uma 

análise sistemática dos dados de consumo energético e informações das edificações 

escolares. Os resultados que caracterizam 417 edificações foram analisados por meio de 

análise exploratória de dados – empregando-se testes estatísticos não paramétricos de 

Kurskall-Wallis e Wilcoxon pareado para avaliar variáveis categóricas, modelo de 

distribuição para variáveis contínuas e frequência de palavras para variáveis descritivas.  

O terceiro artigo propôs uma modelagem top-down, com base nos dados 

apresentados no segundo artigo, a fim de propor um método de benchmarking 

integrativo considerando aspectos subjetivos (satisfação com o ambiente construído) 

para o benchmarking. A categorização das variáveis foi feita por meio da discretização 

por igual frequência, e uma Rede Bayesiana foi utilizada como método estatístico de 

predição para o benchmarking, utilizando as probabilidades condicionais e relações 

entre variáveis selecionadas como meio de cálculo das probabilidades do resultado final. 

A avaliação do desempenho da Rede Bayesiana foi realizada por meio de uma validação 

cruzada e determinou-se a matriz de confusão da rede, bem como sua acurácia, taxa de 

erro e demais medidas de desempenho. 

O quarto artigo propôs uma estrutura de modelagem bottom-up para se construir 

um arquétipo com menos incerteza para modelo de benchmarking. O arquétipo foi 

desenvolvido com base na entropia das variáveis que caracterizam o estoque de 

edificações, aplicando-se análise de agrupamento (método k-médias e Silhueta média 

para cálculo da quantidade de grupos) para seleção dos valores que compõem o modelo 

paramétrico. A entropia foi mensurada por meio da equação de Shanonn. Quanto maior 

a entropia da variável, mais valores foram adotados pela análise de agrupamento para 

serem inseridos na simulação paramétrica, de forma que o modelo seja capaz de 

representar melhor o estoque real de edificações. O arquétipo foi simulado utilizando o 

EnergyPlus e oito arquivos climáticos representando cada uma das zonas bioclimáticas 

brasileiras. Os resultados das simulações foram utilizados para formular o método de 

benchmarking por meio de uma Rede Neural Artificial (com 80% dos resultados das 

simulações), de forma a generalizar os desempenhos típicos em função das variáveis 

utilizadas como parâmetros para avaliação do desempenho do edifício. A avaliação do 

desempenho da rede neural foi realizada por meio de uma validação cruzada utilizando 
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20% dos resultados das simulações, e determinou-se tanto a raiz do erro quadrático 

médio quanto o coeficiente de variação da raiz do erro quadrático médio. 

O quinto artigo apresentou uma aplicação prática do modelo de estoque 

construído no quarto artigo. O método empregado fez uso parcial do modelo 

apresentando no quarto artigo e, apesar de mais simplificado, simulou cenários 

climáticos futuros. Quatro arquivos climáticos utilizados na simulação foram adaptados 

utilizando o método morphing para incluir os cenários A2 do IPCC de previsão de 

mudanças climáticas para 2050 e 2080. Além disso, dois cenários de condicionamento 

de ar foram incluídos para representar situações futuras em que escolas teriam sistemas 

de condicionamento de ar em todos os ambientes. 

 

Resultados e Discussões 

Os resultados mostraram que as variáveis determinantes para o consumo de 

energia no estoque de edifícios escolares no Brasil foram: i) o número de alunos; ii) área 

construída; iii) tempo de operação; iv) especificações do sistema de climatização (tipo e 

quantidade) e v) o clima. Outros fatores como a satisfação térmica e a necessidade de 

melhorias desempenharam um papel importante, mas não foram decisivos. A questão da 

ciência dos diretores das escolas sobre o consumo de energia e a satisfação com outros 

aspetos de qualidade do ambiente interno (como a satisfação acústica e a satisfação com 

a iluminação) não foram relevantes para o desempenho energético. Além disso, as 

respostas da pesquisa mostraram que as escolas no Brasil não têm qualidade do 

ambiente adequada para aprendizado, e os ocupantes relataram uma necessidade urgente 

de melhor desempenho térmico, possivelmente resolvido com maior condicionamento 

de ar. Assim, o aparente baixo consumo de energia do estoque (se comparado a outros 

países) é um problema de pobreza energética somado à necessidade de melhor 

desempenho térmico nesses edifícios. Outro resultado importante é que a consideração 

de aspectos subjetivos é importante para permitir um benchmarking confiável. Um 

modelo probabilístico foi proposto neste trabalho para integrar variáveis qualitativas e 

quantitativas do estoque de edificações para realizar tal avaliação. A Rede Bayesiana 

apresentou resultados adequados. O método usado para aprimorar a composição do 

arquétipo (avaliação da entropia e seleção de valores da análise de agrupamento) 

forneceu um modelo de estoque de apropriado para representar adequadamente as 

condições de estoque. Este modelo de estoque baseado em arquétipos de suporte à 
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análise de cenários hipotéticos para a população de edifícios, tais como implementação 

de estratégias de eficiência energética e desempenho em climas futuros. 

Nesta tese, as duas abordagens de modelagem propostas resultaram em 

aplicações diferentes. A modelagem top-down se mostrou uma solução baseada em 

evidências para representar relações estatísticas e fornecer uma única escala de 

desempenho. Este modelo foi mais adequado para incluir os aspectos da satisfação dos 

ocupantes na avaliação do desempenho operacional dos edifícios. Por outro lado, o 

modelo bottom-up foi baseado nos dados do estoque para representar arquétipos; e usou 

inteligência artificial para generalizar a estimativa do benchmark de acordo com 

características da edificação. Este modelo é adequado para avaliar o desempenho do 

edifício em condições padronizadas. Como resultado, ambas as abordagens devem ser 

consideradas de forma diferente, porque medem indicadores diversos e resolvem 

problemas diferentes. Assim, ambas as abordagens são úteis e válidas porque avaliam 

questões distintas. 

 

Considerações finais 

A estrutura proposta para desenvolver o modelo de estoque de edificações 

bottom-up foi aplicado com sucesso em um estudo de caso considerando cenários 

futuros de dados climáticos e intervenções de instalação de ar-condicionado. Se o status 

quo for mantido, o estoque de edifícios escolares brasileiros experimentará aumento de 

88% em seu consumo de energia médio até 2050 e 170% em 2080. Portanto, ações 

devem ser tomadas para proporcionar uma transição consciente para um estoque de 

edificações escolares mais energeticamente eficiente e confortável aos seus ocupantes. 

As limitações do trabalho incluem: a quantidade de dados utilizada, uma vez que 

apenas um ano de dados de consumo de energia foi empregado (variações ano a ano 

devem ser exploradas); a restrição de aplicabilidade do modelo top-down apenas à 

amostra utilizada, uma vez que as probabilidades são intrínsecas aos dados e; a 

dependência subjetiva da modelagem da volumetria do arquétipo no modelo bottom-up 

em relação ao analista. Essas limitações podem ser sanadas em investigações futuras, 

para as quais sugere-se: ampliação da base de dados para inclusão de mais períodos e 

tipologias, e melhoria de composição do arquétipo utilizando ferramentas de 

modelagem paramétrica e programada. 
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1. Introduction 

 

1.1. Context 

 

The energy sector is one of the main responsible for the human impacts on the 

global environment. These impacts are related to greenhouse gas emissions due to 

energy generation, contributing directly to aggravate climate change (EBC IEA, 2013b). 

The International Panel on Climate Change (IPCC) established that reducing the overall 

energy use and looking for alternative energy sources are two urgent tasks to diminish 

the climate change effects and bring more sustainability to communities (IPCC, 2012). 

Moreover, the IPCC examines the impact of climate change effects in all sectors of 

society and the importance of mitigating such effects to bring balance between a healthy 

human society and the ecosystems on the planet. 

Regarding the energy consumption in buildings, the Brazilian National Energy 

Report stated that this sector accounted for around 40% of the total electricity consumed 

in the country in 2020 (EPE, 2021). Therefore, actions to reduce the energy 

consumption in buildings are important due to the significant share of the building 

sector in the total energy consumption. 

However, there are challenges in quantifying the energy consumption in 

buildings regarding the availability and amount of data in a standardised way. Such 

challenges difficult the long-term and stock-level energy analysis (HAMILTON et al., 

2015). The Annex 53 report of the International Energy Agency (IEA) established the 

six main factors that impact the energy consumption in buildings: climatic conditions, 

envelope, systems, operation and maintenance, occupant behaviour and indoor 

environmental quality (IEQ) (EBC IEA, 2013b). However, it is difficult to determine a 

systematic approach to consider all those factors simultaneously. Thus, there is a need 

to assess the building performance in a multidisciplinary approach. An insightful 

solution to assess the energy performance of buildings is to consider a group of 

buildings as a population and to apply statistical analysis through multidisciplinary 

evaluation – this concept is called energy epidemiology. 

Energy epidemiology is an empiric-based approach that uses data obtained in 

actual world to assess energy usage in systems. This approach employs the 

epidemiology concept borrowed from medical science to seek connections and findings 

related to energy use in communities (HAMILTON et al., 2013). Some studies that 
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apply energy epidemiology have been carried out to improve energy efficiency in 

buildings (COFFEY et al., 2015; HAMILTON et al., 2017; VAN DEN BROM; 

MEIJER; VISSCHER, 2018). Due to the impact of socio-cultural particularities on the 

conditioning factors of energy consumption, there is a need for an individualised 

analysis of each cultural reality, once the building models and the methods of 

characterization of the building stock used in other countries cannot be directly applied 

in Brazil (BORGSTEIN; LAMBERTS, 2014).  

The methodology of energy epidemiology finds answers to explain the patterns 

of energy consumption not only analysing the consumption log but also other related 

phenomena. Statistical analyses are employed to “enrich” the energy consumption 

database to search for cause-effect functions in groups of buildings under similar 

conditions. For example, Love and Cooper (2015) discussed this issue by combining 

data from different research approaches to create an interdisciplinary approach that took 

into account both technical and social issues. They reviewed three case studies and 

presented technical and social analyses, crossing quantitative and qualitative data and 

methods. As a result, the authors presented a new approach to social and technical 

research, recognising that energy use in buildings is both a social (because it makes use 

of an interactive person-environment resource) and a technical issue (due to system-

environment and performance interactions).  

Thus, on the one hand, there is considerable experience in studying energy 

performance from a building-level perspective. On the other hand, the statistical 

analysis of buildings in a stock-level perspective is gaining ground. Therefore, facing 

the energy consumption in buildings as a statistical phenomenon by grouping similar 

buildings into the “building stock” allows comprehensive epidemiological assessments. 

The building stock is represented through models – which allows test scenarios and 

detailed assessment of the building performance. In summary, analysing both building 

and stock-level perspectives of research may shed light on the building performance 

analysis in general. For example, a single solution can be explored in one building, but 

it can be an energy efficiency strategy for other buildings if they share similar 

conditions. 

Hence, stock modelling techniques are necessary. A building stock is a database 

or inventory which records and represents as much information as possible at the level 

of individual properties (EVANS; LIDDIARD; STEADMAN, 2017). 

Kohler and Hassler (2002) outlined important tasks for studying resources used 
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in the building stock, such as quantifying energy, water and gas use, quantifying empty 

and occupied buildings, operating costs, logistics and mass flows, land use planning and 

conservation of historical monuments. In addition, building stocks are typically 

differentiated according to typologies to allow comparisons (comparing hospitals to 

hospitals, hotels to hotels, homes to homes, and so on). 

A building stock represents an important tool to help increase energy efficiency. 

Among other criteria, Kavgic et al. (2010) established that the building stock must be 

able to: 

• estimate a baseline of energy demand from existing buildings; 

• explore the technical and economic effects of different efficiency 

improvement strategies (reduction of energy and CO2 consumption), 

including the impact of new technologies; and 

• identify the effect of strategies to improve efficiency in the built environment 

and the quality of the indoor environment. 

 

A simplified example of stock composition was carried out by Mendonça 

(2012), who presented a method for characterising the stock of historic buildings in 

Florianópolis. Forty historic buildings were catalogued by compiling characteristics 

such as floor-plan area, relationship with the surroundings, colour and thickness of 

walls. Some conclusions were obtained by statically analysing the building stock, such 

as the low coefficient of determination between construction parameters and energy 

consumption, and the positive trend between the increase in glazed areas and energy 

consumption, but with weak correlations. 

An advanced example is the project TABULA, which is a project to map and 

model the building stock in the European housing sector by aggregating information of 

location, floor-plan area, year of construction and consumption of electricity and gas. 

Episcope is an ongoing project that is part of TABULA, which aims to make energy 

retrofit processes more transparent and efficient in the European housing sector. In these 

projects, energy retrofit measures in residential buildings are identified and monitored, 

seeking to calculate scenarios for the stocks and portfolios studied, identifying the 

savings, construction and system combinations, and the renovation rates necessary to 

achieve the goals. The objective of the programmes is to help the countries of the 

European Union to achieve the goals for reducing the emission of carbon dioxide into 

the atmosphere (EPISCOPE, 2013). 
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Another advanced stock model is the 3DStock project, a tool developed by the 

Centre for Energy Epidemiology in the United Kingdom. This tool assesses the building 

stock in “three dimensions” through a digital model that associates building massing, 

materials, age, use, and energy and gas consumption. 

The three-dimensional representation of the stock enables a longitudinal 

assessment, which considers the relationships among neighbouring buildings, 

surroundings, social aspects and even more advanced fluid dynamics modelling. Some 

conclusions presented by Evans, Liddiard and Steadman (2017) point out the significant 

influence of outliers on the typologies of offices, stores and workshops – which makes it 

impossible to create standards for understanding the use of energy – and less influence 

in schools, restaurants and coffee shops. In addition, 3DStock provides a detailed 

information model for thermal simulation. This simulation environment from 3DStock 

was developed by the same researchers and is called SimStock (COFFEY et al., 2015). 

Although the 3DStock and the SimStock are advanced approaches, they are restricted to 

a single and small region (in a scale of a city or neighbourhood). Country-level models 

like this are still not supported by the current technology.  

While quantifying human behaviour, thermal and energy loads and infiltration 

rates may be feasible at the scale of the building, it is impractical in large groups of 

buildings. Thus, it is necessary to summarise the stock of buildings into archetypes, 

which is the definition of parameters representing a group of buildings with similar 

properties (REINHART; DAVILA, 2016) through a single (or few) representative 

building model. 

Schaefer and Ghisi (2016) analysed a residential building stock composed of 120 

affordable housing in Florianópolis. The objective of the analysis was to evaluate the 

characteristics and determine reference models for energy performance simulations. A 

cluster analysis was used through hierarchical and non-hierarchical approaches, and two 

buildings were determined as reference models (archetypes). Computational simulations 

were used to validate the method and showed that the archetypes could adequately 

represent the building stock since the degree-hours obtained by means of computer 

simulation were similar to the sample means. Brøgger and Wittchen (2018) reviewed 

several studies that used inventory modelling to identify key representational elements. 

As conclusions, the authors point out that the representativeness of the archetypes must 

be improved, as sometimes it is not clear what makes the archetype or the building of 

reference representative. Furthermore, the authors point out that when efficiency 
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measures are studied, the potential energy savings are usually calculated considering the 

total installed power, not the building systems and occupant behaviour, which leaves a 

gap considering the actual savings. 

Alves et al. (2017) used archetypes to measure the potential for energy reduction 

due to energy efficiency measures. In order to understand the energy demand and 

provide information for intervention in existing buildings in Belo Horizonte (Brazil), 

the work proposed a framework to estimate the baseline of consumption of skyscrapers, 

based on the investigation of urban zoning, taxes information and field questionnaires 

from a stock. Results showed that the potential reductions were higher than the 

reductions observed in-situ, especially in lighting and cooling systems. In a following 

study, Alves et al. (2018) listed energy conservation measures and determined scenarios 

to calculate an energy-saving potential. Results showed an energy consumption 

reduction potential of up to 24% in relation to the baseline, considering the initial 

investment outlay, in 20 years.  

Despite the fact that archetypes imply in loss of individual building details, the 

important differences between types of buildings are represented in the process.  

The method proposed by Reinhart and Davila (2016) employs archetypes to 

simulate urban environments. In summary, archetypes are used to integrate 3D GIS 

models and compose an emulation of the neighbourhood-level environment to simulate 

the physics-based phenomenon (bottom-up model). The result is a manipulable model 

of part of a city. The method has been widely applied to study stock-level carbon-

reduction strategies considering the building-to-building interactions (ANG; 

BERZOLLA; REINHART, 2020). The method relies on extensive and comprehensive 

information regarding the building stock allied to the digital model of the city. 

Although the composition of the inventory is a critical issue to model 

archetypes, the use of archetypes can be helpful to both evaluate strategies to reduce 

energy consumption at the building stock level and assess typical conditions of actual 

buildings. By assessing typical conditions, it is possible to achieve typical energy 

performances of the building stock. Consequently, typical energy performance supports 

the process of energy benchmarking of buildings. 

Energy benchmarking of buildings is the process of comparing the energy 

performance of a building to a reference (benchmark) (CHUNG, 2011). To make this a 

fair comparison, factors such as climatic conditions, floor-plan area, type of use, and 

systems must be taken into account. Energy performance benchmarking in buildings are 



26 

 

widely used by government initiatives to measure operational energy performance on a 

large scale (BORGSTEIN; LAMBERTS, 2014; HONG et al., 2014; LI; HAN; XU, 

2014). In some countries, benchmarking is developed through government-determined 

information, intending to bring public pressure on the owners or managers in case of 

poor-performing buildings by encouraging them to improve performance. The most 

used performance indicator is the energy use intensity (EUI) – kWh/m².year or 

equivalent unit (BRADY; ABDELLATIF, 2017; FUMO; MAGO; LUCK, 2010).  

Studies that evaluated methods to obtain the benchmark are increasing. Li, Han 

and Xu (2014) categorised benchmarking methods considering their complexity level 

(white, grey, or black-box approaches). A comprehensive review of the method is 

presented by Chung (2011):  

i. Simple normalisation: a statistical analysis determines the benchmark by 

means of statistical measures (e.g., mean or median, or upper quantile for 

good practices). Further statistical analysis, such as histograms and 

correlation analysis, can be performed (BOEMI et al., 2011; LI, 2008; 

SCOFIELD, 2013; SCOFIELD; DOANE, 2018; TAYLOR et al., 2018); 

ii. Regression analysis (or Ordinary Least Square, OLS): the benchmark is 

determined through a cause-effect function of the energy performance 

and relevant characteristics. A statistical regression model is employed 

(BORGSTEIN; LAMBERTS; HENSEN, 2016; HONG et al., 2014a; 

PAPADOPOULOS; KONTOKOSTA, 2019; SABAPATHY et al., 

2010). 

iii. Stochastic Frontier Analysis (SFA): a regression equation is also 

employed to determine the benchmark; however, there is a determination 

of a geometric element using data of high-performance buildings 

(BUCK; YOUNG, 2007; YANG; ROTH; JAIN, 2018). 

iv. Data Envelopment Analysis (DEA): regression analysis is used to 

determine a boundary that includes all observations, and the benchmark 

is calculated using the distance of such dataset (CHUNG, 2011; LEE, 

2008,  2009a). 

v. Advanced methods: methods that take advantage of computational 

intelligence, for instance, geostatistical approaches (KOO; HONG, 2015; 

ÖSTERBRING et al., 2018) and machine learning, such as decision tree 

and artificial neural networks (CHUNG; YEUNG, 2017; PARK et al., 
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2016; RUZZELLI et al., 2010; SEYEDZADEH et al., 2018). 

 

An example of a benchmarking system is the EnergyStar – an American 

organization linked to the EPA (Environmental Protection Agency) that establishes 

processes for continuous improvement of energy efficiency. Annually, the EnergyStar 

promotes and publishes energy benchmarks for buildings in the United States 

(ENERGY STAR, 2015). One of the practices that must be carried out during the 

energy management suggested by Energy Star is comparing a building performance to 

benchmarks, which consists of comparing the performance with similar buildings on the 

market, rating it a score from 0 to 100. The rating system (found in the Energy Star ® 

Portfolio Manager) establishes guidelines for energy management in buildings, such as 

standards, concepts, and best practices to be applied, as well as guidelines for 

performing benchmarking such as: 

• Based on its past performance: comparing last month’s performance with 

a baseline (12 months, for example); 

• Average in the market: comparison with a standardised and average 

indicator published by a recognised agency; 

• Best in the market: comparison with the upper quantile of the 

standardised indicator published by a recognised agency; 

• Best Practices: Qualitative comparison against certain established 

practices considered to be the best in the industry. The Energy Star ® 

“Energy Program Assessment Matrix” is an example of a qualitative 

benchmarking tool. 

 

Although some organizations have particular methods to establish benchmarks, 

the methods can – and should – undergo adaptations according to their context (LI; 

HAN; XU, 2014). 

Hsu (2014) evaluated the relationship between building characteristics and their 

energy consumption in New York City using statistical regression models (ANOVA and 

Bayesian regression) on displayed performance information of the benchmarking 

policy. In this study, the author concluded that the level of building performance in 

previous evaluations has a more significant influence than any other parameter. One 

concluded that the benchmarking method could predict performance as properly as an 
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energy auditing. Park et al. (2016) established six new efficiency rating categories by 

benchmarking commercial buildings in South Korea using electricity consumption data 

from 2012 to 2014 of 1,072 buildings. The authors used Pearson’s correlation to verify 

the relevance of construction characteristics with energy consumption intensity and then 

establish new benchmarks using the Decision Tree method. ANOVA was used as a 

system for validating the benchmarks achieved. Chung (2020) explored a non-

parametric least square model to improve benchmarking in Hong Kong to consider 

factors that the building manager can control. 

In Brazil, Borgstein and Lamberts (2014) proposed a first benchmarking 

methodology for the country. The method was applied to bank branches and consisted 

of using archetypes to simulate typical conditions of buildings under several climatic 

conditions to develop a regressive model. The authors also obtained the typical 

electricity end-uses of the building stock of bank branches. Veloso et al. (2020) 

evaluated the building stock in Belo Horizonte through a statistical benchmarking 

approach. Although this method is accurate because it is evidence-based, it is restricted 

to the region of study. 

In order to propose a country-applicable model, the CBCS (short for Brazilian 

Council for Sustainable Construction, in Portuguese: Conselho Brasileiro de 

Construção Sustentável) applied the same method developed by Borgstein and 

Lamberts (2014) to create benchmarking policies for office buildings in 2019 – the 

project DEO (short for Operational Energy Performance, in Portuguese: Desempenho 

Energético Operacional). In 2021, a project funded by Eletrobras and executed by 

CBCS improved the DEO initiative by including benchmark models of 15 typologies, 

including: bank branches (review), resorts, hotels, small hotels, big retails, small retails, 

grocery stores, restaurants, shopping centres, nursery schools, elementary and high 

schools, universities, hospitals, health care buildings, and data centres. Data from the 

project META (Technical assistance from the energy and mineral sectors) was used. 

The method employed regressive analysis of simulated archetypes obtained through a 

building stock model. Although benchmarking models were obtained, some limitations 

were drawn during the project development. For example, the evaluation of the 

representativeness of the archetypes considering the actual building stock, the response 

of the building stock to the benchmark model, and the consideration of subjective 

aspects on the benchmarking. 
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In this way, this thesis proposes a broad discussion about the building stock 

modelling applied to benchmarking in Brazil. For such an aim, the building typologies 

must be studied individually once the features and characteristics of a building are 

intrinsically related to its social function. The target typology of this study was the 

school building stock in Brazil, specifically the elementary and high public schools 

(Education of children from seven to seventeen years of age). Although public schools 

are planned to follow a standard design guided by the National Fund for Educational 

Development (in Portuguese “Fundo Nacional de Desenvolvimento da Educação”, 

FNDE), many school buildings have particularities regarding the topography, size and 

budget. This makes the school building stock assorted and worthy of investigation. The 

justification for selecting such building stock was due to the importance of the Public 

Administration knowing the energy efficiency of their buildings. Additionally, there is 

an impact of the social function of this typology in society (BURMAN; MUMOVIC; 

KIMPIAN, 2014). Moreover, only electricity consumption was evaluated.  

 

1.2. Problem 

 

The state of the art reveals a need for a robust and reliable method to evaluate 

the energy performance of existing buildings, which has to be consistent with the 

regional context. Some methods for building stock modelling were proposed to achieve 

such aim, using archetypes or descriptive analysis of the stock. Archetypes are helpful 

for approaches that lack disclosure of energy policies data, while descriptive analysis 

can explore such transparency information. Although more advanced, 3D stock 

modelling is restricted to a specific neighbourhood due to the technological limitation 

and need for high-detailed information.  

Hence, the problem of improving energy benchmarking and building stock 

modelling that is addressed in this thesis can be outlined according to the following 

research questions: 

• What are the main factors that impact the energy consumption in school 

buildings in Brazil? There is a need for a descriptive analysis of the 

target building stock using a cross-sectional approach. By evaluating 

many subjects (buildings) of the same typology, it is possible to 

correlate the main building characteristics with their corresponding 

electricity consumption through a comprehensive statistical analysis. 
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• How can subjective aspects (such as thermal satisfaction) be considered 

in benchmarking policies? Taking user-related information into account 

in benchmarking evaluation guarantees trustful benchmarking accuracy. 

An efficient building is not only the one that consumes less energy but 

also the one which provides adequate environmental conditions by 

presenting low energy consumption. This is an issue that always has to 

be considered when operational energy performance is evaluated. Thus, 

integrating subjective aspects when evaluating energy efficiency is a 

challenge not considered in benchmarking models. 

• How can one improve the representativeness of the building stock 

model? Since archetype-based benchmarking models are suitable for the 

Brazilian context, there is a need for a standard and replicable method to 

enhance the representative of archetypes in the stock modelling process. 

The current building stock modelling methods propose adopting data 

based on standards and legislations for some archetypes’ parameters. 

Then, the actual representation of the building stock is limited because 

the actual stock does not always comply with standards and legislation 

guidelines. Nevertheless, the archetype simulation may lead to non-

typical performances. Additionally, reducing uncertainty in the 

archetype composition is fundamental to guarantee that the benchmark is 

applicable for the building stock. 

 

Therefore, this research is justified by integrating actual data in the comparative 

assessment of energy performance. In summary, we explore the school building stock in 

Brazil through an epidemiological approach, i.e. considering the buildings as a 

population and accounting for their diversity in features and behaviours. 

 

1.3. Objectives 

 

1.3.1. General objective 

 

The objective of this thesis was to develop methods to obtain representative 

building stock models to benchmark the energy performance of Brazilian schools 

considering building-level and stock-level perspectives. 
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1.3.2. Specific objectives 

 

Each specific objective is related to a main objective of each paper that 

composes this thesis and can be outlined as follows: 

 

• Identify the current state of the art of the building stock modelling 

approaches and the benchmarking methods through a literature review 

considering both building-level and stock-level perspectives of energy 

analysis in buildings; 

• Assess the school building stock in Brazil by means of a cross-sectional 

survey and a comprehensive statistical analysis that correlates the main 

features of the building stock with their electricity consumption. This 

objective was expected to compose a wide-ranging overview of the target 

building stock to be used in this study; 

• Propose a top-down model to evaluate the whole-building performance 

in the benchmarking method, including subjective approaches such as 

thermal satisfaction;  

• Propose a bottom-up building stock modelling framework that uses 

stock-level information to enhance the archetypes representativeness and 

obtain a manageable building stock model; 

• Evaluate the applicability of the building stock model proposed and its 

validity by applying the building stock model obtained herein to address 

the effects of climate change in the overall benchmarks of the school 

building stock in Brazil. 

 

1.4. Innovation 

 

The innovation of this thesis is the mitigation of the gaps expressed in the 

Problem Section and can be outlined as follows: 

• An innovative energy epidemiological approach of the school building 

stock in Brazil is reported through a comprehensive statistical analysis 

of the dataset. One employed an associative approach integrating real-

world data from energy bills and evidence from survey applications to 
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compose an innovative dataset of energy performance associated with 

environmental satisfaction. Several analyses between the energy 

performance and environmental satisfaction of occupants were outlined, 

as well as the necessity for improvements and energy management 

aspects; 

• Using a machine learning technique (Bayesian Network), an innovative 

approach was proposed to integrate subjective aspects of the building 

performance with technical aspects in a probabilistic way. The data-

driven method provides a reliable method for energy benchmarking 

mixed-mode buildings in warmer climates, identified as lacking in the 

literature. It brings metrics to evaluate building energy performance in 

countries where mixed-mode operation is predominant; 

• The need for a standard structure to model the building stock led to the 

proposition of an innovative standardised framework to obtain a 

benchmark. The framework combines Information Theory through 

entropy and cluster analysis to determine the parameters of the 

archetype. The archetype is used to model an ANN that serves as the 

benchmarking tool; 

• Additionally, the literature review paper is an innovative analysis 

focused on empirical studies about energy performance analysis in 

buildings. A systematic approach was used to survey the studies related 

to the operational building performance and a meta-analysis process 

established the relationship among studies. 

 

Therefore, this thesis contributes to the understanding of the actual performance 

of buildings and it strengthens the state of the art of building stock modelling worldwide 

by proposing a technique to manage the uncertainties involved in representing the 

buildings as a group through manageable models. 

 

1.5. Structure of the thesis 

 

Apart from the Introduction, Discussions and Conclusion chapters, this thesis is 

composed of five chapters; each one presents a paper reporting the work performed 

during the doctorate. The papers were transcribed ipsis litteris to this thesis, just as they 
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were published or submitted to journals, but with their layout adjusted to this document. 

Table 1.1 shows a summary of the papers, the journals in which they were published or 

submitted and the current status of each paper in the moment of the finalization of this 

thesis.  

 

Table 1.1 – Articles that compound the core of this thesis 

Title Journal Status 

Building-level and stock-level in contrast: A literature review 

of the energy performance of buildings during the operational 

stage 

Energy and 

Buildings 

Published in 

January 2020 

Mapping the energy usage in Brazilian public schools 
Energy and 

Buildings 

Published in 

June 2020 

Integrating evidence-based thermal satisfaction in energy 

benchmarking: a data-driven approach for a whole-building 

evaluation 

Energy 

Submitted in 

May 2021, 

Under Review 

Data-driven framework towards realistic bottom-up energy 

benchmarking using an Artificial Neural Network: application 

for Brazilian schools 

Applied 

Energy 

Submitted in 

July 2021, 

Accepted in 

August 2021 

Impact of implementing air-conditioning systems on the 

school building stock in Brazil considering climate change 

effects: a bottom-up benchmarking 

Building 

Simulation 

Conference 

Presented and 

published in 

September 

2021 

 

All references were compiled at the end of this thesis for conciseness since 

several references are redundant in each Chapter. ABNT format was adopted for 

references. The conceptual model of this thesis is shown in Figure 1.1 and is explained 

as follows. 
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Figure 1.1 – Structure of the thesis. 

 

The literature review presented in Chapter 2 enlightened the current state of the 

art of studies that assessed building energy performance evaluation during the 

operational stage. Complementary literature reviews are presented in each paper with 

updated studies regarding each subject since the paper was published in early 2020. The 

review process allowed the identification of two distinct approaches of study: a 

building-level perspective, which assumes that the energy analysis of the building is 

conducted at its specific level, considering the whole building as an individual; and a 

stock-level perspective, which considers the information from a group of buildings 

considering the variations among buildings.  

The main methods and the time resolution assessed in the studies reviewed were 

summarised in the literature review, and conceptual models of each perspective of 

analysis (building-level and stock-level) were drawn. Conceptual models provided how 

the subjects addressed in studies connected with each other, and research insights 

prospected. 

Then, from the extensive research of studies around the subject, it was possible 

to identify that benchmarking models lack in studying uncertainties in building stock 

representation, especially related to uncertainties due to operational performance. 
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Definition of representative benchmarks and verification of the application of 

benchmark models in actual building stocks were also pointed as limitations. 

Subsequently, the school building stock was adopted as the target object of 

study. A survey was carried out to characterise the school building stock by means of 

requesting data from all 27 state education departments in Brazil. A questionnaire was 

applied to the school principals to raise information from actual schools to enhance the 

dataset and school’s characterisation. Fifteen Brazilian states provided information 

about energy consumption, floor-plan area and other information on approximately 

2,000 buildings, but only around 500 filled-in questionnaires were obtained. The final 

clean treated and complete dataset comprises the full characterisation of 419 schools, 

including information regarding location, energy consumption, building features, 

systems types and specifications, occupant behaviour patterns, satisfaction with the built 

environment and needs for improvements. The dataset was comprehensively 

investigated through statistical analysis by correlating the energy consumption of the 

buildings to their characteristics. All the process of gathering and analysing this dataset 

is presented in Chapter 3. The main results of this overview showed that most of the 

schools do not have HVAC systems in classrooms. Also, there is a significant difference 

in EUI from schools that have HVAC in classrooms compared to those with no HVAC. 

The EUI as a function of the number of students was more appropriate than the floor-

plan area to achieve a reliable energy performance analysis. Comments from the 

principals emphasise a need for air-conditioning, and the low levels of satisfaction with 

the temperature proved that schools, in general, provide poor thermal conditions to the 

occupants. This fact led to a complementary research insight: a simple classification of 

energy performance might classify buildings with poorer indoor conditions as efficient, 

but they needed air-conditioning. 

Henceforward, a model for integrating this thermal satisfaction evaluation 

needed to be proposed, and it is presented in Chapter 4 through a top-down 

benchmarking approach. The dataset obtained through the survey (Chapter 3) was used 

to construct a data-driven model that integrates occupant-reported thermal satisfaction 

into the whole-building evaluation – together with building features, location, and 

systems specification. A machine learning approach through Bayesian Network was 

employed to integrate subjective aspects of the building performance with technical 

aspects in a probabilistic way. Thus, a method for improving reliability in energy 

benchmarking of mixed-mode buildings in warmer climates was proposed, which was 
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identified as lacking in the literature. Additionally, this method brought metrics to 

evaluate building energy performance in countries with predominant mixed-mode 

operation, i.e. high cooling demand and use of natural ventilation. 

The difference between top-down and bottom-up analysis in the building stock 

model must be specified. While the top-down (data-driven) analysis employs an 

evidence-based approach and uses relationship among variables to predict an outcome, 

the bottom-up analysis employs deterministic equations to calculate a result of a 

physical phenomenon. Top-down approaches are restricted to the dataset but consider 

uncertainties inherent to reality since they are based on evidence – for example, a linear 

regressive equation can predict the energy consumption of a sample of buildings. 

Bottom-up methods calculate the phenomenon by means of physical iterations – for 

example, energy simulation is often used to determine thermodynamic processes and 

achieve thermal loads. To do so, archetypes are used. Literature reports that there is 

high uncertainty in collecting parameters of the simulation of archetypes, and a need for 

representative methods to extract information from the building stock is lacking. 

Although the top-down approach is useful to evaluate building performance 

when a large evidence-based dataset is available, a bottom-up approach is useful to 

model a manageable building stock model. Since this approach is based on deterministic 

calculations, it is possible to determine the response of the performances of the 

buildings in the stock under conditions yet unseen. 

In this thesis, both methods were proposed. A top-down method was proposed to 

integrate the subjective aspects reported by occupants in the benchmarking model, and a 

bottom-up method was proposed to reduce uncertainty regarding the archetype by 

approximating the archetype to typical conditions observed in the stock. Both methods 

used school buildings in Brazil as a test-bed dataset, but they can be applied to other 

typologies and other countries. The purpose was to contribute methods to model the 

building stock with high representativeness. 

Therefore, in Chapter 5, a framework using a bottom-up approach was proposed 

to reduce the uncertainty of the archetypes. The framework combines Information 

Theory through entropy and cluster analysis to determine the parameters of the 

archetype. The archetype is used to model an ANN that serves as the benchmarking 

tool. Then, an actual sample of buildings is benchmarked, showing how the building 

stock responded to a benchmark application. 
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The motivation of the study came from the need for a standard framework to 

model the building stock in developing countries to obtain representative archetypes 

and, consequently, reliable benchmarks. The main innovation relies on the formulation 

that this framework was proposed: the schematic data-driven method was created to 

reduce uncertainty in modelling archetypes for energy benchmarking of buildings. 

Moreover, the study innovatively reported an actual building stock benchmarking 

evaluation on a large scale in Brazil. Important conclusions showed that the Brazilian 

school building stock had a tendency to inefficiency, and a specific study case pointed 

out that inefficient equipment might cause such inefficiency. 

The development of this manageable building stock model allowed the further 

exploration of the model to test the response of the current building stock under future 

climatic conditions and considering the gradual implementation of HVAC in 

classrooms. This analysis is presented in Chapter 6. Through this analysis, it was found 

that the average EUI would increase around 88% compared to the actual EUI if HVAC 

systems were implemented today in classrooms. Moreover, there would be an increase 

of 43% of the EUI in 2080 due to climate change effects. Conclusions support that 

enhancing thermal comfort conditions in school building stock needs attention towards 

improving passive energy efficiency strategies and implementing active cooling 

systems. 

Finally, Chapter 7 shows a discussion to link all papers’ results and the 

contribution of the thesis by associating the results with other studies in the literature. 

The discussion is conducted to highlight the importance of the building stock modelling 

as well as the results of the case study evaluated: the school building stock in Brazil. 

Insights of the typical Brazilian school building conditions and their implications on 

their energy performance are discussed, together with the consequences on the 

occupants’ conditions. Therefore, the concept of benchmarking is discussed to show the 

purpose of benchmarking and how this practice is related to energy efficiency in 

buildings. 

At last, it is important to mention the impact of the COVID-19 pandemic in this 

study. A data collecting phase was planned to occur at the beginning of the school year 

in 2020 (March 2020). This phase would collect high-granularity energy consumption 

data (using smart meters) and thermal satisfaction evidence from students of around 12 

schools. Since the pandemic outbreak in February 2020 in Brazil, lockdown measures 

stopped school activities, and collecting such data was not possible. An ongoing change 
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in the thesis approach was needed, and Chapter 5 reflects the main change – instead of 

using monitored data, building energy simulation was used to obtain the energy 

performance of the stock. Actually, this improved the thesis by bringing a fresh outlook 

for the use of archetypes, which supported the development of a manageable building 

stock model. 

As a final remark on this Chapter, one discusses the validity of the energy 

benchmarking application. In this thesis, two stock modelling methods were proposed: a 

top-down and a bottom-up method. The top-down method was an energy 

epidemiological solution based on evidence to model statistical relationships and 

provide a single performance scale. This method is suitable to include occupants’ 

aspects in buildings operational performance evaluation. On the other hand, the bottom-

up method started from the building stock dataset to model archetypes; artificial 

intelligence was used to generalise the benchmark prediction. This method is adequate 

to rate the building performance under standard conditions. As a result, both aspects are 

important to be considered and have to be considered differently because they measure 

different metrics and solve different problems. Thus, both methods are useful and valid, 

but they perform different evaluations. 
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2. Literature review 

 

This Chapter is the transcription of the following paper: 

 

Building-level and stock-level in contrast: A literature review of the energy 

performance of buildings during the operational stage 

Authored by Matheus Soares Geraldi and Enedir Ghisi. 

Published in Energy and Buildings (ISSN: 0378-7788), volume 211, in 2020, 

and catalogued through the DOI: https://doi.org/10.1016/j.enbuild.2020.109810 

 

Abstract: 

This paper aimed to review the literature of the past ten years about the energy 

performance of buildings during their operational stage. The focus of this review was 

empirical works that examined the energy use in real buildings. An overview of the 

literature survey is presented. A meta-analysis technique al- lowed the identification of 

two approaches of study: building-level analysis and stock-level analysis. The building-

level analysis considers the building as the system of study. Otherwise, the stock-level 

analysis considers a group of buildings as the subject of study while the buildings are 

elements inside the system. Notable research topics were addressed involving 

performance gap, energy audit, retrofit savings assessment, Zero Energy Buildings 

(ZEB), benchmarking, regulations and strategies to overcome climate change. This 

literature review summarised the level of information of the studies by listing the 

granularity of the energy performance data according to the purpose of the study. 

Furthermore, a specific section was dedicated to assemble the methods and tools 

adopted. Finally, we proposed conceptual models for both approaches (building and 

stock-level) that outlined the main aspects and dynamics identified in this literature 

review. Thus, we obtained insights to be investigated in further studies. 

 

  

https://doi.org/10.1016/j.enbuild.2020.109810
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1. Introduction 

 

Reducing energy consumption is a well-known and urgent task since many 

studies have shed light on the impact of energy on climate change (BATES et al., 

2008). Assessing the energy use in buildings is essential since they are significant 

contributors to energy demand. In this regard, energy performance of buildings has 

become the focus of many studies. 

De Wilde (2018) discussed the emerging field of the building performance 

analysis by gathering and organising the most common terms and relevant studies. 

There is a debate about the definition of building performance analysis because it could 

mean distinct concepts. Nevertheless, energy performance is usually related to the 

amount of energy consumed to provide adequate environmental quality and to achieve 

the building function. 

Designing buildings that consume less energy should contribute to decreasing 

energy demand. However, in practice, this is not necessarily what has been observed. 

Newsham et al. (2009) analysed 100 LEED-certified buildings and concluded that only 

about 18-39% used less energy with a weak correlation between certification and energy 

performance in all of them. Furthermore, Scofield et al. (2009) re-analysed part of the 

Newsham’s database and concluded that there is no statistical difference of the site 

energy between LEED-certified buildings and their matching CBECS (Commercial 

Building Energy Consumption Survey) office buildings. 

Although these buildings were designed to be energy efficient, they might reveal 

different performance levels during the operational stage. Indeed, the energy 

performance predicted in the design phase rarely matches the measured performance. 

This phenomenon is defined as the “energy performance gap” (DE WILDE, 2014; 

GENG et al., 2018; KHOURY; ALAMEDDINE; HOLLMULLER, 2017; SUNIKKA-

BLANK; GALVIN, 2012) or just “performance gap” (BRADY; ABDELLATIF, 2017). 

The understanding of the causes and consequences of the performance gap have been 

the subject of many studies (DE WILDE, 2014; HORRIGAN; MURPHY; DONNELL, 

2017; KHOURY; ALAMEDDINE; HOLLMULLER, 2017; SUNIKKA-BLANK; 

GALVIN, 2012), as well as some of the means to bridge the gap (e.g., BARTHELMES 

et al., 2017; GENG et al., 2018; LIM; ZHAI, 2017; MENEZES et al., 2012). Data-

driven models are often used to provide real-world data to enhance prediction models 

during the lifespan of the building (CHEN; TAN; BERARDI, 2018; WEI, Y. et al., 
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2018). However, adopting data-driven models to predict the performance of another 

building could lead to significant bias (TARDIOLI et al., 2015). 

Buildings are complex systems composed of an arrangement of smaller systems, 

interacting with the occupants (D’OCA; HONG; LANGEVIN, 2018; DE WILDE, 

2017). That concept has led to a definitive insight: “buildings don’t use energy, people 

do” (JANDA, 2011). The IEA (International Energy Agency) EBC (Energy and 

Buildings Communities) annex 53 (EBC IEA, 2013a) defined six main factors that 

impact the energy consumption in buildings: (a) climate; (b) envelope (c) systems and 

equipment; (d) operation and maintenance; (e) user behaviour and; (f) indoor 

environmental quality. From this perspective, two well-defined dimensions could be 

depicted: (a), (b) and (c) are related to building dimension – i.e., where the building is, 

what it is made of, what is in the building; and (d), (e), (f) are related to human 

dimension – i.e., how people use them, how they maintain them, and their satisfaction, 

comfort and health levels in the building. Understanding the interface human-built 

environment could lead to a better prediction of energy use and make the energy 

efficiency actions more reliable and feasible.  

In this way, the study of energy performance in the real world is as relevant as 

the development of advanced simulation tools (that reproduce complex 

physical/behaviour phenomena). Being conscious of how energy is used in practice can 

help to improve building simulation and, consequently, to enhance the construction of 

new, reliable and high-performance buildings (MENEZES et al., 2012). Additionally, 

the study of energy use over the operational stage might support the improvement of the 

existing building stock through retrofits and campaigns for behaviour change (MA et 

al., 2012). Ultimately, one can address the actual energy usage scenario demanded by 

buildings and support energy efficiency policies (HSU, 2014). 

Despite the difficulty of evaluating energy performance of buildings at stock 

level, several studies addressed the topic in many different contexts. The literature 

review performed by Pereira et al. (2014) gathered energy performance information of 

schools in different countries, highlighting the differences in usage patterns. The study 

of Santim (2011) determined behavioural patterns associated with the energy used for 

heating in houses while correlating them with building characteristics. Ahn et al. (2017) 

analysed a large number of office buildings data and tried to establish correlations 

between energy consumption and building characteristics. 
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The emerging Display Energy Policies – which makes owners and managers 

declare the energy consumption in their buildings – and the advancing of Building 

Automation Systems are providing data to explore the real energy use in buildings. This 

fact induces that the energy performance analysis during the operational stage must 

consider the building stock to compare a building with its pairs (HSU, 2014). The 

energy epidemiological approach attempted to achieve reliable stock-level analysis by 

considering buildings as a population (HAMILTON et al., 2013). Some studies were 

performed using such a methodology (HAMILTON, 2017; HAMILTON et al., 2014), 

and the outcomes led to a discussion about the benefits of using energy efficiency 

policies.  

Benchmarking is a convenient method used to assess the energy performance of 

existing buildings because it takes advantage of the comparison among pairs. The 

literature review of Chung (2011) presented mathematical benchmarking methods and 

discussed the applicability of benchmarking for increasing energy efficiency. Several 

studies discussed benchmarking, from a comparison among existing methods 

(BORGSTEIN, LAMBERTS; HENSEN, 2016; HONG et al., 2014) to benefits of using 

this approach (HSU, 2014; MENG; HSU; HAN, 2017) and development of new 

methods (BORGSTEIN; LAMBERTS, 2014; MELEK, 2007; RUZZELLI et al., 2010). 

Papadopoulos et al. (2018) innovated by analysing energy time series data of buildings 

to identify patterns using benchmarking of two typologies: commercial and residential 

buildings. Results showed that typologies respond differently regarding the energy 

disclosure policy, which reveals a need for a comprehensive framework considering 

building specificities. 

In this way, some studies examined the performance at a building-level. The 

principal perspective of those studies is to analyse one facility/building performance and 

to establish baselines for comparison with itself. Ma et al. (2012) present a 

comprehensive state of the art of the methodologies available. 

In this paper, the main objective was to conduct a literature review about the 

energy performance of buildings during the operational stage by differentiating the 

stock-level and building-level perspectives. This paper intended to discover the main 

targets of research in the operational stage in the past ten years and to describe the lead 

research purposes using relevant studies as examples. Also, this paper aimed to 

summarise the level of information and the methods and tools of the works reviewed. A 
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final specific objective was to develop a conceptual model by linking the pieces of 

research reviewed and recognising the train of thought. 

 

2. Results of the Literature Search 

 

The search was carried out using a systematic review method. The main engine 

of the search was the Scopus platform. Several attempts were made starting with general 

terms (including “building energy performance” plus “operation” plus “use” plus 

“real”). The final argument of search is described below: 

  

TITLE-ABS-KEY (buildin* AND energy w/3 performanc* w/4 ("operation*" OR 

"use" OR "actual" OR "real") AND NOT (concret* OR material) 

 

We considered this argument satisfactory because it encompasses relevant and 

well-known papers and excludes non-associated studies. Similar arguments were used 

in other search engines (ScienceDirect and Google Scholar). Most of the results were 

redundant, but we added some complementary articles in the database. Henceforward, 

we employed the term “Operational Performance” to denote measured and in-use 

energy performance. This terminology was formalised by ISO 50001 (ISO, 2018). The 

literature survey resulted in 574 documents, including eleven review papers, and the 

reference date is 17 June 2019. Table 2.1 shows the top ten most cited articles.  

 

Table 2.1 – Top 10 articles (out of 574) of the literature survey in Scopus. 

# Title Authors Journal Year 
Number 

of 

citations 

1 
Existing building retrofits: 

Methodology and state-of-the-art 

Ma, Z., Cooper, 

P., Daly, D., 

Ledo, L. 

Energy and 

Buildings 
2012 405 

2 
Do LEED-certified buildings save 

energy? Yes, but... 

Newsham, G.R., 

Mancini, S., Birt, 

B.J. 

Energy and 

Buildings 
2009 298 

3 

The gap between predicted and 

measured energy performance of 

buildings: A framework for 

investigation 

De Wilde, P. 

Automation 

in 

Construction 

journal 

2014 281 
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Table 2.1 – Top 10 articles (out of 574) of the literature survey in Scopus 

(continuation). 

# Title Authors Journal Year 

Number 

of 

citations 

4 

Predicted vs. actual energy 

performance of non-domestic 

buildings: Using post-occupancy 

evaluation data to reduce the 

performance gap 

Menezes, A.C., 

Cripps, A., 

Bouchlaghem, 

D., Buswell, R. 

Applied 

Energy 
2012 278 

5 

European residential buildings and 

empirical assessment of the Hellenic 

building stock, energy consumption, 

emissions and potential energy 

savings 

Balaras, C. A., 

Gaglia, A. G., 

Georgopoulou, 

E., Sevastianos, 

Mirasgedis S., 

Sarafidis, Y., 

Lalas, D. P. 

Building and 

Environment 
2007 267 

6 
A review of sensitivity analysis 

methods in building energy analysis 
Wei, T. 

Renewable 

and 

Sustainable 

Energy 

Reviews 

2013 255 

7 
Introducing the prebound effect: The 

gap between performance and actual 

energy consumption 

Sunikka-Blank, 

M., Galvin, R. 

Building 

Research and 

Information 
2012 216 

8 

A hybrid decision support system for 

sustainable office building 

renovation and energy performance 

improvement 

Juan, Y.-K., Gao, 

P., Wang, J. 
Energy and 

Buildings 
2010 190 

9 
Review of building energy-use 

performance benchmarking 

methodologies 
Chung, W. 

Applied 

Energy 
2011 141 

10 
Quantitative energy performance 

assessment methods for existing 

buildings 

Wang, S., Yan, 

C., Xiao, F. 
Energy and 

Buildings 
2012 131 

 

The top 10 articles show diverse objectives: some studies go deep into 

performance gap (DE WILDE, 2014; MENEZES et al., 2012; NEWSHAM; MANCINI; 

BIRT, 2009; SUNIKKA-BLANK; GALVIN, 2012; WEI, 2013); others present retrofit 

methodologies (MA et al., 2012); and assessing energy performance methods are also 

included (JUAN; GAO; WANG, 2010; WANG; YAN; XIAO, 2012), as well as 

benchmarking (CHUNG, 2011). Figure 2.1 presents an overview of the search results, 

while Table 2.2 presents the top ten sources including their journal metrics. 
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(a) 

  

(b) (c) 

Figure 2.1 – Overview of the publications selected. (a) Number of articles published per 

year (in Scopus), (b) shows the top five Country/Territory with the corresponding 

number of documents, and (c) shows the top five keywords and the frequency of 

appearance. 

 

Table 2.2 – Top 10 international journals. 

Top 10 Source 
Number of 

Documents 

Source 

IF 

Source 

SNIP 

Source 

SJR 

1 Energy and Buildings 98 4.495 1.826 1.934 

2 Applied Energy 28 8.426 2.616 3.455 

3 Energy Procedia 19 - 0.58 0.468 

4 

Building Research and 

Information 
13 3.744 1.59 1.283 

5 

Building and 

Environment 
12 4.82 2.198 1.879 

6 Procedia Engineering 11 - 0.78 0.277 

7 Building Simulation 10 2.238 1.06 1.186 

8 Energies 10 2.676 1.16 0.612 

9 Energy Efficiency 9 1.961 0.92 0.698 

10 Energy 8 5.537 1.822 2.048 
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We noticed that “Energy and Buildings” and “Applied Energy” journals lead the 

publications in this field. It is remarkable that they lead not only the number of 

publications, but also the impact of the publications, once six out of the ten most cited 

articles were published in these two journals. 

Nevertheless, we applied a systematic search method to carry out the literature 

review, and we only disregarded articles that focused either on simulations (i.e., 

optimization of simulation algorithms, propositions of methods for calculating, 

calibrating and validating simulations, and related subjects); or on human aspects in 

buildings (i.e., environmental comfort, such as thermal, acoustic or lighting comfort, 

and related subjects). Thus, the participation of these two journals in the analysis was 

not determined by the authors. Instead, we understood that the concentration of studies 

in “Energy and Buildings” and “Applied Energy” is an indicative that these journals are 

quite involved in the field and are leading the knowledge progress. 

The interest in the field increased in the past ten years, and we refined our search 

to cover this period specifically. The countries that produced more studies (the United 

States and the United Kingdom) stand out for government programmes and incentives 

on energy use in buildings. The keywords most frequent were “Energy Efficiency”, 

“Energy Utilization” and “Buildings”. 

First, the abstracts of the documents were reviewed using a meta-analysis way. 

From this process, it was evident that the studies on energy performance of buildings 

had two different main approaches: one focused on the building level and one focused 

on the stock level. So, we sought to distinguish the subject of study in those two 

approaches. Furthermore, some articles were excluded due to the disinteresting subject 

of study (especially because they used simulation or non-empirical data) resulting in 

312 articles. 

According to the content of each article, we could identify the primary purposes 

that the studies addressed, and we grouped them according to common terminologies. 

From the first reading of the abstracts, Table 2.3 shows the structure of the classification 

according to the preliminary meta-analysis. 
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Table 2.3 – Arrangement of the Identified purposes of research. 

Approach Identified Purposes of Research Section 

Building-level 

analysis 

Performance Gap 3.1.1 

Energy Audit 3.1.2 

Retrofit Savings Assessment 3.1.3 

Zero Energy Buildings (ZEB) Evaluation 3.1.4 

Stock-level analysis 

Benchmarking 4.1.1 

Regulations and directives for the building stock 4.1.2 

Strategies to Overcome Climate Change Effects 4.1.3 

 

The articles were fully reviewed to go deeper into each category of the meta-

analysis. The initial hypothesis about the building-level and stock-level definition 

proved to be very important because different methods, tools and techniques according 

to the target of study were found. Furthermore, diverse outcomes and applicability were 

expected as well. In this regard, this literature review was structured according to 

building-level and stock-level differentiation. A discussion about the boundary for both 

topics is presented. We gathered the main objectives pursued by both topics, as well as 

the level of information employed, the methods and the tools applied. 

 

3. Building-Level Analysis 

 

In this section, we gathered studies that focused on energy performance at the 

building-level. This approach assumes that the energy analysis of the building is 

performed at its specific level, considering the whole building as an individual. The 

subject could be a facility with either one building or multiple (not many), for example, 

a school with all-in-one building or with one building for the classrooms and other for 

the administration. 

 

3.1. Identified Purposes of Research 

 

We grouped the studies that analysed the performance of buildings over the 

operational phase at building-level according to four purposes of research: performance 

gap, energy audit studies, retrofit savings assessment, and ZEB evaluation. We could 

say that a study is somehow always related to at least one of those topics. 
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3.1.1. Performance Gap 

 

Several studies aimed to understand or proposed methods to overcome the 

performance gap. In order to comprehend performance gap phenomena, De Wilde 

(2014) defined types of variability and broke the performance gap down into first-

principle predictions and measurements; machine learning and measurements; and 

predictions and display certificates in legislation. This study brought a comprehensive 

review of this theme. 

Many studies pursued ways to overcome the performance gap, and the 

occupancy was pointed out as a significant factor that impacts on energy performance 

(AZAR; MENASSA, 2012). Menezes et al. (2012) proposed a method to reduce the 

performance gap by using post-occupancy data in the simulation process. Pisello et al. 

(2012) proposed a method to integrate dynamic simulation and measurements of 

thermal performance in houses.  

Pisello et al. (2012a) brought the discussion about the impact of surrounding 

buildings on the energy performance once building simulations have used boundary 

conditions very different than the actual building – e.g., using weather conditions 

collected in airport locations that do not consider inter-buildings interactions. Pisello et 

al. (2014a) proposed a model to consider the relation among buildings in order to 

mitigate those differences of context. The study aimed to break down the energy 

consumption and analysed only primary energy for lighting because it was the end-use 

most affected by surrounding buildings. Results showed that considering the inter-

building effect is essential to enhance energy predictions. 

Case studies that bring integrations between simulation and in-situ experiments 

were found in the literature. In residential typology, Lehman et al. (2017) compared a 

very high energy performance housing with a regular dwelling in Geneva. Results 

showed that average values are similar in both cases, and conclusions showed that there 

is a vast potential of optimisation during the operational phase of a building. 

In non-residential typologies, Burman et al. (2018) investigated the energy 

performance of five schools designed under the programme “schools for the future” in 

England. This programme defined guidelines to design energy-efficient school 

buildings and sustainable and high-quality environment. However, the analysis of the 

real operational performance showed that these schools consumed 37 to 191% more 
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energy than the average of similar schools in the same region. The study highlights the 

need for post-occupancy evaluation to assess the operational performance and suggests 

a holistic perspective to evaluate the performance of buildings. 

Regarding office buildings, Liang et al. (2019) surveyed LEED-certified 

buildings to investigate the driving factors of the performance gap. The authors grouped 

the reasons of the performance gap into three: (a) occupants use more energy than 

modelled, (b) there are more occupants than modelled, and (c) failures of energy-

efficient technologies. Gunay et al. (2019) examined the operational parameters of 

HVAC that impacts the performance gap in office buildings in Canada. Results showed 

that habits of the occupants and default features of equipment could be improved to 

optimise the operation.  

Zou et al. (2019) performed structured interviews with professionals from 

designing and operation of buildings in order to find causes of the performance gap. 

Eight leading causes were drawn from the results: “(i) Inaccurate design parameters, (ii) 

Failure to account for uncertainties, (iii) Lack of accountability, (iv) Poor 

communication, (v) Lack of knowledge and experience, (vi) Inefficient and over-

complicated design, (vii) Lack of post-construction testing, and (viii) Lack of 

feedback”. Suggestions of ways to overcome the performance gap were grouped into 

three categories: strategies to better regulation, strategies to enhance the design process, 

and strategies for training the operation workforce. The training of the operating team 

was addressed by Elzarka (2009). This study brought the best practices in 

commissioning and highlighted that timing of commissioning, independence and 

certification are essential skills that the commissioner must possess.   

Salehi et al. (2015) presented a case study of a LEED-certified university 

building in Canada. The performance of the analysed building was about 60% higher 

than the predicted. The leading cause of this performance gap was due to the operation 

process – very different from the model. Part of the operation problems relied on the 

unpredicted heat exchange and wastewater treatment plant existent but not considered in 

the modelled loads. Besides, the actual usage with lighting and loads were also hugely 

discrepant than the predicted consumption.  

Stoppel and Leite (2014) analysed different time resolutions of energy 

consumption to address the energy model accuracy. Monthly resolution can be used to 

describe the seasonal error in energy performance. Daily resolution can be used to 
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confirm schedules of operation and to give patterns of usage. A 15-minute resolution 

provides the efficiency of the equipment and fault detections. 

 

3.1.2. Energy Audit 

 

Energy audit studies are related to practices and methods to characterise the 

building regarding energy usage and, recurrently, to assess Fault Detection and 

Diagnosis (FDD). The primary reference for energy auditing is the EnergyStar® 

building management guidelines (EPA, 2016) and the International Standard ISO 50002 

(ISO, 2014). Frequently, the product of the energy audit is the rating of the performance 

of the building. O’Learey (2015) presents a relevant review of using metered data for 

rating. Geng et al. (2019) present a comprehensive review of the overall monitoring in 

green buildings. 

In this sense, the quantification of energy use and end-uses assessment are 

relevant. A comprehensive review of the methods to assess quantitative energy 

performance during the operational stage is presented by Wang (2012). The author 

summarises the objectives of the energy performance assessment (either classification 

or diagnosis) as well as examples of applications. The energy quantification methods 

were divided into calculation-based (e.g., simulation), measurement-based (e.g., 

monitoring), or hybrid (e.g., calibrated simulation).  

Since energy audit is a widely known and very regulated topic, we only present 

some studies that present highlights in technological innovation. Ham (2013) presents 

an integration of thermal analysis added to the simulation model using augmented 

reality (3D inspection), which dramatically facilitates the job of the energy auditor. Kalz 

et al. (2009) presented minute-to-minute monitoring associated to the thermal comfort 

evaluation in a group of mixed-mode buildings. Felix et al. (2016) proposed an 

integrated monitoring-simulation technique in order to identify failures. Petri et al. 

(2017) proposed an integration of monitoring with Building Information Modelling 

(BIM) to provide an optimised environment and Zhang (2015) proposed a similar 

monitoring-BIM integration. Nordström et al. (2013) developed a method to estimate 

U-values in housing using the energy signature. O’Neill et al. (2014) proposed a method 

to integrate monitoring and real-time simulation to make a continuum energy modelling 

improvement. Henze et al. (2015) combined the energy consumption of each system 

into a real-time dashboard based on web application. Noye et al. (2016) improved 
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commissioning by using wireless sensors to measure the air conditioning use. Energy 

auditing also supports the study of the performance of specific systems in the buildings. 

For example, Fan and Ito (2012) integrated CFD (Computational Fluid Dynamics) to an 

energy simulation to enhance recovery ventilation model using measured data from real 

offices. 

Non-Intrusive Load Monitoring (NILM) is a noticeable technology that uses 

machine learning to breakdown the aggregated energy data into end-uses. It was 

presented by Hart (1992). Yan et al. (2012) presented an alternative disaggregation 

method using billed data. Alzaatreh (2018) proposed a method to disaggregate gas 

consumption from minute-monitored data. Machlev et al. (2019) proposed an 

improvement on one type of algorithm disaggregation. Carrie Armel (2013) discussed 

the relevance of this technology in energy policies. 

Some case studies express the importance of energy auditing and the impact of 

this technique in identifying energy contributors (GONÇALVES; GASPAR; SILVA, 

2012), measuring post-occupancy satisfaction (GUERRA-SANTIN et al., 2013; 

LAWRENCE; KEIME, 2016), measuring components properties (FICCO et al., 2015), 

measuring environmental impact (DAHLAN et al., 2013), improving building 

automation and control (AHN.; CHO, 2017; COSTA et al., 2013; FERRARINI; 

MANTOVANI, 2013) and comparing the actual performance to predicted energy use 

(LIZANA et al., 2018).  

 

3.1.3. Retrofit Savings Assessment 

 

A retrofit action is usually triggered by a motivation to improve energy 

efficiency (FERRARI; BECCALI, 2017; RASLAN; RUYSSEVELT, 2016) or to 

mitigate inefficiencies of systems (MAGOULÈS; ZHAO; ELIZONDO, 2013a). In this 

sense, retrofit is straightforwardly aligned with operational performance because it 

happens in the post-constructed stage. 

Ma et al. (2012) presented a comprehensive state of the art of the methodologies 

used for retrofitting. First, the authors gathered generic retrofit problems. Then, a group 

of sustainable retrofit methodologies and strategies were listed, including energy audit, 

diagnosis, prognostic, economic analysis and risk assessment. Finally, the authors 

presented applications of retrofit technologies to improve performance of buildings by 

giving examples of technologies and case studies. Additional inspiring reviews 
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regarding retrofitting can be found in Hong et al. (2015) for energy monitoring and 

diagnosing and in Sanhudo et al. (2018) for energy modelling. 

The International Performance Measurement and Verification Protocol (IPMVP) 

proposes methods to quantify energy savings in retrofits. The IPMVP outlines methods 

to calculate the retrofit savings according to four options: option A is related to minor 

system metering (specific and isolated system); option B is related to metering the 

retrofit constantly; option C is related to whole-building metering, and option D is 

related to energy simulation. Only option D can quantify multiple energy conservation 

measures at the same time (IPMVP, 2002). However, energy simulation demonstrates 

limitations in modelling energy conservation measures (LI et al., 2015). Improvements 

in IPMVP methods can be found in literature, such as the enhancement of the energy 

simulation using genetic algorithms (RAMOS; FERNÁNDEZ BANDERA, 2017), 

gaussian modelling (HEO; ZAVALA, 2012), consideration of uncertainties (HEO; 

CHOUDHARY; AUGENBROE, 2012), and integration with a real-time monitoring 

system that continuously inform the energy savings occasioned by a retrofit (TSENG et 

al., 2013).  

Energy conservation measures can be implemented through system upgrading 

(e.g., HVAC systems (PAN et al., 2012), lighting system (FERNANDES et al., 2014; 

PETCHARAT; CHUNGPAIBULPATANA; RAKKWAMSUK, 2012)); envelope 

improvement (e.g., for office buildings (GÜÇYETER; GÜNAYDIN, 2012), historic 

buildings (AKANDE et al., 2016; CORNARO; PUGGIONI; STROLLO, 2016)); or a 

whole-building modernising (e.g., school buildings (ZINZI et al., 2016), houses 

(CORRADO; BALLARINI, 2016; ZAHIRI; ELSHARKAWY, 2018)). Furthermore, 

combinations of minor actions could lead to a great intervention (NIEMELÄ; 

KOSONEN; JOKISALO, 2017; PETTERSEN et al., 2017). New methods to assess the 

amount of energy saved according to the retrofit intervention and minimising 

uncertainty are emerging in literature (MAGRINI; MAGNANI; PERNETTI, 2012), 

such as artificial neural networks (BECCALI et al., 2017) and multi-objective 

optimisation (CARLI et al., 2015). Recently, the findings of the impact of occupants on 

energy consumption have encouraged authors to consider campaigns of changing the 

occupant behaviour as an energy conservation measure as well (BARTHELMES; 

BECCHIO; CORGNATI, 2016; DELLAVALLE; BISELLO; BALEST, 2018; 

RUBENS et al., 2017; SUN; HONG, 2017). 
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The real estate sector is profoundly affected by retrofit actions. Energy 

performance is one of the main points of interests of new tenants in Europe, who seek 

for high-performance homes (DE RUGGIERO et al., 2017; TADEU et al., 2016). In 

this sense, Entrop et al. (2010) proposed the consideration of real estate values in the 

retrofit analysis. The study showed that investments in wall and roof insulation could 

provide payback about 40-50% shorter if the analysis considered the increase of the 

property value as well. Christersson et al. (2015) evaluated the benefits of making 

regular energy audits in properties in order to maintain high-quality operation. Results 

showed an increase of 2.5% in the value of properties that had frequent energy audits. 

It is possible to find a vast number of case studies of retrofit assessments in the 

literature. Some relevant ones bring that energy conservation measures provide 

reductions up to 81% in school buildings (ZINZI et al., 2016) and also increase user 

satisfaction in houses (ALONSO et al., 2017). Furthermore, an adequate, cost-effective 

retrofit action provides not only indoor quality improvement but also the boosting of the 

occupants’ productivity (VALANCIUS; JURELIONIS; DOROSEVAS, 2013). 

However, we highlighted the case study of Sun et al. (2018), which monitored a 

refurbished building with LEED EBOM gold certification. The retrofit was designed to 

provide 30% of savings, but the real performance indicated only 16%. This performance 

gap was credited to occupancy variability. 

 

3.1.4. Zero Energy Buildings (ZEB) Evaluation 

 

Zero Energy Buildings (ZEB) are the ultimate goal for a high-performance 

building. It integrates energy efficiency strategies with energy generation to achieve 

fully sustainable operation of the building. ZEB is the path to a more sustainable city 

according to the European Energy Performance of Buildings Directive (EPBD) which 

targets the building stock renovation towards Near Zero Energy (denominated project 

Near Zero Energy Buildings or NZEB) (FERRARI; BECCALI, 2017).  

The EPBD regulates methodologies to calculate energy use in buildings as well 

as requirements for new and existing buildings, periodic inspection of systems and 

requirement of certifications. The Directive 2010/31/EU of 19 May 2010 and The 

Commission Recommendation (EU) 2016/1318 of 29 July 2016 address NZEB 

renovation targeting. A structured platform was developed to help the compliance of 

this target, by recording, charactering and classifying ZEBs retrofits according to a 
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specific criteria to provide information and insights to new projects (D’AGOSTINO; 

CUNIBERTI; MASCHIO, 2017). 

Relevant studies in different countries across Europe addressed lessons learned 

due to the implementation of NZEB, such as: considering the comfort model and its 

parameters in energy demand of ZEBs – including the difference in employing adaptive 

comfort model against stationary model in Spain (GUILLÉN-LAMBEA; 

RODRÍGUEZ-SORIA; MARÍN, 2017); quantifying the impact of the directives in the 

stock renovation due to technologies and constructive updates in Greece (GAGLIA et 

al., 2017) and Spain (LÓPEZ-OCHOA et al., 2019a); reviewing the requirements for 

NZEB renovation for heating demand in houses in Poland (FIRLAG; PIASECKI, 

2018); evaluating specific retrofits and suitable energy conservation measures in school 

buildings using a simulation-audit integrated approach in Italy (ROSPI et al., 2017; 

SALVALAI et al., 2017) and Spain (LÓPEZ-OCHOA et al., 2019b); a comprehensive 

review regarding local Building Energy Regulation Codes and their relation with the 

geographical level (SALVALAI; MASERA; SESANA, 2015); analysing the Passive 

Haus Standard suitability as a solution for integrating NZEB directive, considering 

environmental quality energy consumption and costs of heating and ventilation of social 

housing (COLCLOUGH et al., 2018). Additionally, the experience gathered allowed 

the development of innovative techniques for optimization combining energy generation 

and energy efficiency measures (D’AGOSTINO; PARKER, 2018). 

Notwithstanding, it is crucial to assess the operational performance of ZEB to 

assure that the building reaches its target. For example, in Portugal, Magalhães (2014) 

compared standardised and actual requirements for thermal performance in the 

residential sector, showing the difference between predicted and actual performances. In 

Italy, a full monitoring study performed in a residential building-lab evidenced that the 

photovoltaic energy generation lacks the prediction very often implying in optimization 

needs (ASCIONE et al., 2019).  

A general overview regarding NZEB in southern EU countries was presented by 

Attia et al. (2017), who highlighted the retrofit of the existent stock as a major challenge 

for the NZEB agenda. Further detailed information of the NZEB topic of the EU 

commission can be found in the Overview of Member States information on NZEBs 

(GRÖZINGER et al., 2014; WEHRINGER, SCHERBERICH, GROEZINGER, 

BOERMANS, JOHN, 2014). 
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Nevertheless, considering studies found in the literature, it is possible to note 

substantial benefits from ZEB cases. For example, Colon (2010) analysed four case 

studies of ZEB houses by monitoring and comparing them with a simulated model. 

Results showed that the houses consumed about 80-100% less energy than a standard 

house. Zhou et al. (2016) examined an ZEB case in China, and conclusions showed that 

the energy savings were 18% lower than the simulated case. However, the energy 

generation presented performance gaps, i.e., variations in the expected/generated energy 

ratio from 13% to 65%. To reduce the performance gap in ZEB evaluations, Berggren 

and Wall (2017) proposed two methods that normalise ZEB measurements. The first 

method normalised the geothermal generation (and it reduces the gap from 12 to 5%), 

and the second normalised the photovoltaic systems (and it reduces the gap from 17 to 

5%). Li et al. (2018) evaluated the real performance of six ZEB houses in Canada. The 

study used energy auditing to obtain specific energy demand by end-use and to compare 

the performances to improve the comprehension of the variations. Schimschar et al. 

(2011) estimated the greenhouse gas emissions reductions through NZEB stock 

upgrading in Germany. In the most optimistic scenario, it would be possible to reduce 

up 50% of the greenhouse gas emissions by 2020 compared to 1990 values. 

In South Korea, Suh and Kim (2019) proposed a framework to turn the buildings 

of a community buildings into ZEBs. The study pointed out that energy efficiency 

strategies could reduce energy consumption by 20%. However, one strategy for energy 

generation alone could not supply all the remaining demand. So, the solution was to 

integrate energy generation strategies (e.g., photovoltaic system, geothermal heat pump 

and solar thermal system).  

A relevant insight is presented by Robert and Kummert (2012). The authors 

presented a framework to assess ZEB performance evaluation using future estimated 

weather files in simulation modelling. In this work, the authors highlighted that ZEB 

has the trend to become less efficient over time due to climate change interference. 

 

3.2. Level of Information 

 

Different levels of information were observed in the building-level studies 

reviewed. The energy consumption is related to the frequency of the amount of energy 

that was used during a period. It is given in units of energy per time. Each study used a 
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different time resolution according to its objective. A summary of the time resolution is 

presented in Table 2.4, according to each identified purpose of research.  

 

Table 2.4 – Time resolution of energy consumption in the building-level analysis. 

Purposes Time Resolution Sources 

Performance gap 

15-minute  (STOPPEL; LEITE, 2014) 

Hourly 

(HEIDARINEJAD et al., 2013; KALZ et al., 2009; 

LEE; HENSEN, 2015; PISELLO et al., 2012b,  

2014a) 

Monthly 
(GUPTA; GREGG, 2016; LIANG; QIU; HU, 2019; 

STOPPEL; LEITE, 2014) 

Annually 
(BURMAN; KIMPIAN; MUMOVIC, 2018; 

PISELLO; GORETTI; COTANA, 2012) 

Energy audit 

1-second (Hertz) 
(FERRARINI; MANTOVANI, 2013; MACHLEV 

et al., 2019; O’NEILL et al., 2014) 

1-minute 

(ALZAATREH et al., 2018; HAM; 

GOLPARVAR-FARD, 2013; KALZ et al., 2009; 

NORDSTRÖM; JOHNSSON; LIDELÖW, 2013) 

15-minute  (KIM; HABERL, 2018; PETRI et al., 2017) 

Hourly (COSTA et al., 2013; HENZE et al., 2015) 

Monthly 

(KIM; HABERL, 2018; LAWRENCE; KEIME, 

2016; LIZANA et al., 2018; O’LEARY et al., 

2015) 

Retrofit savings 

assessment 

1-minute (FERNANDES et al., 2014) 

15-minute (ALONSO et al., 2017) 

Hourly (GÜÇYETER; GÜNAYDIN, 2012) 

Monthly 

(AKANDE et al., 2016; CORNARO; PUGGIONI; 

STROLLO, 2016; LOURENÇO; PINHEIRO; 

HEITOR, 2014; NIEMELÄ; KOSONEN; 

JOKISALO, 2017; SERRANO-JIMÉNEZ et al., 

2019) 

ZEB evaluation 

30-seconds (LI et al., 2018) 

Hourly 
(ASCIONE et al., 2019; BERGGREN; WALL, 

2017; COLON, 2010; ZHOU et al., 2016) 

Monthly 

(COLCLOUGH et al., 2018; FOKAIDES; 

POLYCARPOU; KALOGIROU, 2017; LÓPEZ-

OCHOA et al., 2019a; SUH; KIM, 2019) 

Annually 

(D’AGOSTINO; CUNIBERTI; MASCHIO, 2017; 

FERRARI; BECCALI, 2017; FIRLAG; 

PIASECKI, 2018; GAGLIA et al., 2017; LÓPEZ-

OCHOA et al., 2019b; MAGALHÃES; LEAL, 

2014; ROSPI et al., 2017; SALVALAI et al., 2017; 

SCHIMSCHAR et al., 2011) 

 

Studies that addressed the performance gap have often used hourly data to 

compare actual with simulated performance. Commonly, retrofit savings assessment 

used monthly data. Otherwise, energy audit studies addressed systems performances, 
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rating of buildings and end-use assessments, which raises the need for high-resolution 

data. ZEB evaluation studies follow no identified pattern.  

It is noteworthy that some studies used various granularity (CARRIE ARMEL et 

al., 2013; KIM; HABERL, 2018; MALAVAZOS, 2017). For example, Kim (KIM; 

HABERL, 2018) used billed data (monthly) of five years to assess performance of the 

whole-building as well as sub-metered data (15-minute resolution) of three years to 

assess end-uses.  

 

3.3. Methods and Tools 

 

In this section, we summarised the methods and tools used in the building-level 

studies reviewed. We classified the relevant methods and tools according to the main 

issues that they attempted to achieve: addressing energy end-uses, addressing retrofit 

savings (measure the potential or the effective amount of energy saved due to the 

retrofit); and evaluating a ZEB performance (measure the performance of an ZEB). It is 

essential to highlight that those issues do not correspond exactly to the identified 

purpose of research of section 3.1 because the same methods and tools are often used 

for many purposes.  

Table 2.5 shows a summary of the methods and tools observed in this approach. 

 

Table 2.5 – Summary of methods and tools used for building-level analysis. 

Issue Methods (Tools) Sources 

Addressing 

energy end-

uses 

Energy audit (metering, sub-

metering) 

(GUERRA-SANTIN et al., 2013; 

GUPTA; GREGG, 2016; HENZE et al., 

2015; KIM; HABERL, 2018; 

LAWRENCE; KEIME, 2016; O’NEILL 

et al., 2014) 

Energy disaggregation (NIALM 

- using specific algorithms) 

(ALZAATREH et al., 2018; CARRIE 

ARMEL et al., 2013; MACHLEV et al., 

2019; YAN; WANG; XIAO, 2012) 

Energy simulation (EnergyPlus, 

CFD, DOE, TRNSYS, or 

others) 

(AHN; CHO, 2017; FAN; ITO, 2012; 

FERRARINI; MANTOVANI, 2013; 

GONÇALVES; GASPAR; SILVA, 2012; 

LIZANA et al., 2018; O’LEARY et al., 

2015) 
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Table 2.5 – Summary of methods and tools used for building-level analysis. 

(continuation). 

Issue Methods (Tools) Sources 

Addressing 

retrofit 

savings 

Longitudinal analysis 
(ALONSO et al., 2017; FERNANDES et 

al., 2014; SUN; HONG, 2017) 

Cross-sectional analysis 
(AKANDE et al., 2016; LI; HONG; 

YAN, 2014) 

Energy simulation 

(EnergyPlus, CFD, DOE, 

TRNSYS, or others) 

(CORNARO; PUGGIONI; STROLLO, 

2016; COSTA et al., 2013; GÜÇYETER; 

GÜNAYDIN, 2012; LI et al., 2015; 

NIEMELÄ; KOSONEN; JOKISALO, 

2017; RAMOS RUIZ; FERNÁNDEZ 

BANDERA, 2017; SERRANO-

JIMÉNEZ et al., 2019) 

Evaluating 

ZEB 

performance 

Energy bill analysis 

(D’AGOSTINO; CUNIBERTI; 

MASCHIO, 2017; GAGLIA et al., 2017; 

LÓPEZ-OCHOA et al., 2019a; 

MAGALHÃES; LEAL, 2014; 

SCHIMSCHAR et al., 2011; SUH; KIM, 

2019) 

Energy audit (metering, sub-

metering) 

(ASCIONE et al., 2019; COLON, 2010; 

FOKAIDES; POLYCARPOU; 

KALOGIROU, 2017; LI, H. X. et al., 

2018) 

Energy simulation 

(EnergyPlus, CFD, DOE, 

TRNSYS, or others) 

(BERGGREN; WALL, 2017; 

COLCLOUGH et al., 2018; FERRARI; 

BECCALI, 2017; FIRLAG; PIASECKI, 

2018; KOLOKOTSA et al., 2018; 

LÓPEZ-OCHOA et al., 2019b; ROSPI et 

al., 2017; SALVALAI et al., 2017; 

ZHOU et al., 2016) 

 

Addressing energy end-uses is an essential issue because the end-use could 

explain the energy consumption pattern, expose an energy waste or reveal a system 

inefficiency. Thus, end-uses identification was present in a large portion of the studies 

of this review. In this case: energy auditing was the act to measure the energy end-use 

directly; energy disaggregation means the obtention of end-uses from processing the 

measured data using algorithms; and sometimes it was used energy simulation to obtain 

the end-uses from a model of the building assuming that the actual building will 

consume a similar value. 

As for addressing retrofit savings, longitudinal analysis refers to an approach 

that compared the building with itself in different periods. Cross-sectional analysis 

refers to the comparison of the building with its pairs (benchmarking). Energy 

simulation implies that the energy savings information was obtained from the 

simulation of the energy conservation measures in the model of the building. 
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In ZEB performance evaluations, energy bills analysis, energy audit and energy 

simulation were used. 

 

3.4. Conceptual Model 

 

A conceptual model of the building-level analysis was drawn from the literature 

review of the studies.  

The conceptual model consists of a diagram elaborated using logical links to 

map the paths of research for displaying the topics connections. Furthermore, it was 

possible to recognise insights for further research. Figure 2.2 presents the conceptual 

model of building-level analysis. 

 

 

Figure 2.2 – Conceptual model of building-level analysis. 

 

The four main purposes of research identified in the literature review were 

highlighted and broken down into the relevant existent topics.  
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Current performance gap studies have enlightened the need to consider occupant 

behaviour in prediction models (D’OCA; CORGNATI; HONG, 2015; D’OCA; HONG; 

LANGEVIN, 2018; SUN; HONG, 2017) whereas the identification of the key factors 

that cause the gap was also assessed (DE WILDE, 2014; GUNAY et al., 2019; LIANG; 

QIU; HU, 2019; ZOU; WAGLE; ALAM, 2019). Therefore, the conclusions of the 

studies pointed to a need for modelling improvement (MENEZES et al., 2012; 

PISELLO et al., 2012b,  2014a; PISELLO; GORETTI; COTANA, 2012) by enhancing 

the representation of the operation (BURMAN; KIMPIAN; MUMOVIC, 2018; 

ELZARKA, 2009; LEHMANN; KHOURY; PATEL, 2017; LIANG; QIU; HU, 2019; 

SALEHI et al., 2015). 

Energy audit studies are remarkable for their technological innovations. New 

methods and tools (FELIX et al., 2016; HAM; GOLPARVAR-FARD, 2013; KALZ et 

al., 2009; NORDSTRÖM; JOHNSSON; LIDELÖW, 2013; NOYE; NORTH; FISK, 

2016; PETRI et al., 2017; ZHANG; CHEN, 2015) help to create a thorough description 

of the built environment not only in the physical but also in social dimensions 

(GUERRA-SANTIN et al., 2013; HENZE et al., 2015; LAWRENCE; KEIME, 2016). 

A remarkable study is the one by Gilani et al. (2017), which presented a review of 

methods to assess occupants monitoring in order to improve modelling. This full 

detailed description could lead to a high-resolution model and also to enhance 

prediction process (AHN; CHO, 2017; ALZAATREH et al., 2018; COSTA et al., 2013; 

FERRARINI; MANTOVANI, 2013; FICCO et al., 2015; GONÇALVES; GASPAR; 

SILVA, 2012; YAN; WANG; XIAO, 2012). Ultimately, this high-resolution model and 

the advanced prediction approach could aid mitigating the performance gap (CARRIE 

ARMEL et al., 2013; FAN; ITO, 2012; LIZANA et al., 2018; O’NEILL et al., 2014). 

Systems’ inefficiencies or opportunities for improvements are identified in the 

moment of the energy audit. Then, a retrofit is performed to improve energy efficiency 

(FERRARI; BECCALI, 2017; MAGOULÈS; ZHAO; ELIZONDO, 2013b; RASLAN; 

RUYSSEVELT, 2016). Energy simulation is widely used to predict the effect of a 

retrofit action, and the performance gaps are noticeable in this scenario as well (HEO; 

CHOUDHARY; AUGENBROE, 2012; HEO; ZAVALA, 2012; IPMVP, 2002; LI et al., 

2015; RAMOS RUIZ; FERNÁNDEZ BANDERA, 2017; SANHUDO et al., 2018; 

TSENG et al., 2013). Case studies present retrofits savings according to the purpose of 

the building and the size of the intervention (AKANDE et al., 2016; CORNARO; 

PUGGIONI; STROLLO, 2016; CORRADO; BALLARINI, 2016; FERNANDES et al., 
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2014; GÜÇYETER; GÜNAYDIN, 2012; NIEMELÄ; KOSONEN; JOKISALO, 2017; 

PAN et al., 2012; PETCHARAT; CHUNG; PAIBULPATANA; RAKKWAMSUK, 

2012; PETTERSEN et al., 2017; ZAHIRI; ELSHARKAWY, 2018; ZINZI et al., 2016). 

The impact of the occupants has been pointed out as a relevant factor to be considered 

in retrofit (ALONSO et al., 2017; BARTHELMES; BECCHIO; CORGNATI, 2016; 

DELLAVALLE; BISELLO; BALEST, 2018; RUBENS et al., 2017; SUN; HONG, 

2017; SUN et al., 2018; VALANCIUS; JURELIONIS; DOROSEVAS, 2013; ZINZI et 

al., 2016). 

Furthermore, remarkable studies proposed retrofits to turn buildings into ZEB 

(COLON, 2010; D’AGOSTINO; CUNIBERTI; MASCHIO, 2017; FERRARI; 

BECCALI, 2017). In this sense, the literature has several ZEB case studies that 

emphasize that they reduce the environmental impact of operation of buildings 

significantly (COLON, 2010; D’AGOSTINO; CUNIBERTI; MASCHIO, 2017; SUH; 

KIM, 2019; ZHOU et al., 2016). However, there is a lack of standardisation to evaluate 

ZEB performance, which leads to a performance gap since several studies used distinct 

approaches (BERGGREN; WALL, 2017; LI et al., 2018; ROBERT; KUMMERT, 

2012). 

Therefore, when the building-level is the research approach, it is vital to assess 

energy performance of the building precisely because, otherwise, the guidelines could 

lead to confused strategies that increase greenhouse gas emissions and decrease energy 

efficiency (KELLY; CRAWFORD-BROWN; POLLITT, 2012). 

Studies about building-level analysis during the operational stage occurred in 

different moments throughout the lifespan of the building. Thus, the lifespan of the 

building was placed in the conceptual model to highlight that the performance gap is 

(not always, but often) adjacent to the designing stage, while retrofit is (not always, but 

often) closer to the building deactivation stage. Energy audit and ZEB are topics of 

study relevant throughout the whole building lifespan. 

Thus, the current path of building-level studies shows that there are still lessons 

to be learned and challenges to be overcome. Integrating occupant behaviour, operation 

and maintenance in the building-level evaluation, and designing for the future are key 

accomplishments to achieve high-performance buildings. 
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4. Stock-Level Analysis 

 

The stock-level analysis is an approach that considers the information from a 

group of buildings and considers the variations among buildings (for example, 

variability in size, occupation type, typology, and climate). In other words, the stock-

level approach considers the subject of study as a population. Furthermore, in this 

section, we included a relevant discussion about the definition of the stock. 

 

4.1. Identified Purposes of Research 

 

We identified three main purposes that the studies at stock-level addressed: 

benchmarking, regulations and directives for the building stock, and strategies to 

overcome climate change effects.  

 

4.1.1. Benchmarking 

 

Benchmarking is a useful practice to be applied in building performance analysis 

during the operational stage. Benchmarking is widely referred to as a method to verify a 

single performance in contrast to other with same-typology. However, in this topic, we 

discussed studies that addressed methods to obtain benchmarks – how studies have 

clustered building stock information? How much information was used to assure 

representativeness? What methods were applied according to what purpose? 

In summary, we considered studies that have somehow modelled the building 

stock to obtain reference values of real energy performance. Chung (2011) presents a 

comprehensive review of current methodologies for benchmarking. Li et al. (2014) 

present an informative overview of benchmarking methods and classified them 

according to the complexity level (white, grey or black-box approaches). In general, 

benchmarking methods can be categorized as:  

• Simple Normalization, which is a simple calculation of the statistical measures 

(e.g., mean, maximum, and minimum values). Further statistical analysis can be 

done, such as the determination of quantiles and histograms (BOEMI et al., 

2011; LI, 2008; SCOFIELD, 2013; SCOFIELD; DOANE, 2018; TAYLOR et 

al., 2018); 
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• Ordinary Least Square (OLS, or simple regression), which uses a cause-effect 

function to determine an Energy Use Intensity (EUI) equation (BORGSTEIN; 

LAMBERTS; HENSEN, 2016; HONG et al., 2014; PAPADOPOULOS; 

KONTOKOSTA, 2019; SABAPATHY et al., 2010). 

• Stochastic Frontier Analysis (SFA), which is also a regression method but the 

calculation of the benchmarks includes the determination of a geometric element 

(frontier of performance) using data of high-performance buildings (BUCK; 

YOUNG, 2007; YANG; ROTH; JAIN, 2018). 

• Data Envelopment Analysis (DEA), which is a regression method as well, but 

the benchmarks are determined by a boundary calculated using all dataset 

(CHUNG, 2011; LEE 2008,  2009a). 

• Other advanced methods, such as geostatistical approaches (KOO; HONG, 

2015; ÖSTERBRING et al., 2018), and machine learning techniques (CHUNG; 

YEUNG, 2017; PARK et al., 2016; RUZZELLI et al., 2010; SEYEDZADEH et 

al., 2018), are found to enhance building stock modelling. 

 

In the review of Borgstein, Lamberts and Hensen (2016), an enriching 

explanation of the benchmarking methods is presented. Specifically, the authors 

highlighted the algorithms used, the variables involved, and the level of accuracy 

according to each method. Inaccuracies of benchmarking approaches were raised in the 

literature, especially regarding the static nature of benchmarks that can lead to a never-

ending chasing of the performance gap (HEESEN; MADLENER, 2018). The 

development of tailored benchmarking and the use of correction factors (weather, 

occupancy and end-uses) are strategies to adjust benchmarking tools. A calibrated 

simulation of archetypes is usually employed to consider end-uses in benchmarking 

(BORGSTEIN; LAMBERTS, 2014). However, measured end-uses data is widely more 

reliable (HAMILTON et al., 2017; HAMILTON et al., 2013). 

Benchmarking is supported by the amount of data obtained from policies of 

energy disclosure in buildings. Those policies have drastically grown in the past few 

years. Hsu (2014) discussed the power of benchmarking as a predictor in New York city 

using Bayesian Regression. In this study, the author used data from monthly billing and 

energy audit. The author highlighted that the improvement of the operation could bring 

more results rather than the upgrade of systems. Furthermore, by obtaining information 
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about operation, occupancy, and existing conservation measures, it could be possible to 

improve the comprehension of heterogeneity in buildings. 

The advance of digital technologies (e.g., Internet of Things – IoT, and Artificial 

Intelligence – AI) increases the presence of technological devices into the built 

environment. Controlling devices not always include monitoring purposes (GUERRA-

SANTIN; TWEED, 2015a). However, big data are often formed by sensors and meters 

that exist in buildings (especially non-residential) (ZHOU; FU; YANG, 2016). The 

analysis of these databases can be productive in order to draw user profiles to enhance 

simulation models (D’OCA; CORGNATI; HONG, 2015) or to classify building 

performances in relation to its pairs (MATHEW et al., 2015).  

All the data provided by sensors and Building Energy Management Systems 

result in a Big Data issue (MATHEW et al., 2015; ZHOU; FU; YANG, 2016). Thus, 

the quantity of information is an issue to be addressed. Corry et al. (2015) proposed an 

ontology to address the information from various buildings. Buildings are 

heterogeneous, and building data can be as well. The paper proposed a framework to 

transform building data into semantically enriched information. A similar framework 

was proposed for the residential building stock (CSOKNYAI et al., 2016). 

The study of Mata et al. (2014) associated stock characteristics among countries 

in a statistically perspective. Clustering methods can be used to group buildings into a 

stock model (COTTAFAVA et al., 2018). The age of the building was pointed as a 

relevant but undervalued factor for the building performance (AKSOEZEN et al., 

2015).   

As a final remark on this topic, the methods to model the building stock 

according to its relevant characteristics is a crucial step to achieve reliable benchmarks. 

The EUI indicator is an issue to be addressed as well. Since benchmarking models 

commonly use yearly EUI rated by floor-plan area (kWh/m².year), the precision of the 

indicator is low. Rating benchmarks by cooling/heating demand and using a monthly-

based time resolution could improve benchmarking application (KIM; KIM; LEE, 

2019). Likewise, rating benchmarks according to the building occupancy could be better 

suitable to specific typologies (HONG et al., 2014; PEREIRA et al., 2014). 
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4.1.2. Regulations and directives for the building stock 

 

In the past few years, a significant number of new regulations, directives and 

public policies related to the energy performance of buildings has been arising. In this 

topic, we bring some interesting applications of stock-level analysis to evaluate this 

guidance.  

Regarding regulations for evaluating the performance of buildings during the 

operational stage, energy transparency policies play a prominent role. Those policies 

included Energy Performance Certificates (EPCs) and the Display Energy Certificates 

(DECs), and they continually contribute to increasing the empirical data about 

performance of buildings. These policies are especially relevant in Europe, where the 

EPC policies are not compulsory, but most countries involved have a system to gather 

data voluntarily. The EPC registers compound a key source of information for the use of 

energy and characteristics of buildings. A comprehensive overview of the EPC schemes 

hitherto and a discussion of future improvements towards next generations of EPCs can 

the found in (LI et al., 2019). Although the share of buildings records in the database 

varies across Europe, some studies have shown the benefits of EPC application in their 

countries. For example:  

• In France, Florio and Teissier (2015) analysed the stock information of 

the Enquête Nationale Logements (ENL) and developed an algorithm to 

determine reference models in the ENL database in order to analyse the 

energy performance of the building stock. An actual overview of the 

energy usage according to the typologies analysed is presented. 

• In Spain, Las-Heras-Casas et al. (2018) proposed an algorithm to correct 

information in EPC databases especially in climate zoning, using the 

region of Aragón as case study. A similar case was applied for energy 

planning in a different region (LÓPEZ-GONZÁLEZ et al., 2016). 

• In Ireland, Ahern et al. (2016) discussed the effect of using default 

values of U-values in obtaining EPC for houses. Despite the difficulty of 

obtaining U-values in practice, default values could lead to significant 

bias in assessing the real energy performance rate. Analysing the stock of 

EPCs, the authors concluded that most U-values are underestimated, 

contributing to rating the dwellings wrongly which increases the 

prebound effect. 
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• In Greece, Droutsa et al. (2016) used more than 650,000 EPCs to present 

an overview of the energy performance of the Hellenic residential 

building stock. A summary of the most common building characteristics, 

average energy performance and common retrofit strategies are presented 

and discussed. 

• In Sweden, residential buildings obtained the first EPC in 2008 and the 

second in 2018. The study of von Platten et al. (2019) compared those 

pairwise EPCs in order to analyse changes in performance pioneeringly 

considering building-specific evaluations. 

• Other studies in the Netherlands (FILIPPIDOU; NIEBOER; VISSCHER, 

2017) and Denmark (CHRISTENSEN et al., 2014) used EPC data to 

analyse the stock refurbishment and the applicability of regulation 

requirements to enhance the quality of retrofits. 

 

Pasichnyi et al. (2019) reviewed 79 studies regarding EPC across Europe  and 

proposed a method to assess the quality of information gathered by the EPC policies. By 

comparing the current data that have been collected among countries − the most 

common errors (such as spelling and typo errors) − the authors suggested that the EPC 

features could be reviewed to guaranteed compatibility among datasets. 

In the United States, Ye et al. (2019) reviewed the data sources for energy usage 

in commercial buildings from energy transparency policies. Benefits from those policies 

can be outlined, such as making the energy usage visible and exhibiting the energy 

performance of a building to a potential user. A relevant overview of those certificates 

is presented by Cohen and Bordass (2015). 

Innovations have been continually developed to aid the evaluation of regulations 

and directives in the building stock. For example: 

• To map, visualise and analyse the building stock interactively 

(MHALAS et al., 2013; ZOU; ZHAO; ZHONG, 2017); and to interact 

with the building energy performances using a geographic dashboard 

(GIOVANNINI et al., 2014); 

• To enhance the simulation modelling by considering inter-building effect 

(PISELLO et al., 2014b); 
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• To uptake the transition of building stock into ZEB considering cost-

optimal criterion (FERREIRA; ALMEIDA; RODRIGUES, 2016); 

• To assess Net-Positive Energy Buildings (COLE; FEDORUK, 2015); 

• To estimate the building energy usage using high-resolution data 

(BALLARINI; CORRADO, 2017); 

• To test the accuracy of energy performance certificates through Artificial 

Neural Networks (ANN) (BURATTI; BARBANERA; PALLADINO, 

2014), statistical analysis (STREICHER et al., 2018), comparative 

testing using simulation software (ABELA et al., 2016) and structural 

equation modelling (MAFIMISEBI et al., 2018); 

• To integrate technologies to support decisions towards low-carbon cities 

(MOGHADAM; LOMBARDI; MUTANI, 2017). 

 

Pritchard and Kelly (2014) reviewed the impact of three notorious initiatives – 

Energy Performance of Buildings Directive (EPBD), BREEAM and Cambridge Work – 

on the operational performance of buildings at the University of Cambridge. The study 

highlighted the importance of considering the actual performance. Moreover, evidence-

based studies stated that operational performance is considerably higher than 

standardised and theoretical performance. Goldstein and Eley (2014) proposed the 

Operation and Maintenance (O&M) index, which is “the ratio of the measured energy 

consumption and the simulated energy performance, calibrated for the actual operating 

conditions of the building”. This O&M index was proposed to complement the Asset 

ratio (modelled energy use) and the operation ratio (measured energy use) in order to 

represent a more realistic metric. 

Although certifications usually rate buildings using specific methods, likewise 

the performance gap there is the prebound effect. The prebound effect is the difference 

between the energy performance rated and the actual consumption. This effect is 

noticeable, and it is not random (SUNIKKA-BLANK; GALVIN, 2012).  

Public Policies are strong in the residential sector. While the overall potential 

energy savings of the residential sector is high (FAZELI; DAVIDSDOTTIR, 2018), the 

user behaviour plays a decisive role in determining the energy performance of buildings 

(LOWE; CHIU; ORESZCZYN, 2018). Even with the existence of public policies to 

stimulate the owners to improve their buildings, further refinement is required to 
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highlight the benefits of implanting energy-efficient strategies (WATTS; JENTSCH; 

JAMES, 2011).  

Nevertheless, the improvement of residential buildings with retrofits and energy 

conservation measures can lead to both energy and cost savings (DWAIKAT; ALI, 

2016). Additional economic benefits include high rent taxes of efficient building when 

compared to ordinary ones (MARCELO, 2013). To the landlord, the additional profit on 

renting and selling is more than enough to justify a retrofit investment for improving 

buildings (CHEGUT; EICHHOLTZ; HOLTERMANS, 2016). However, people have 

strong apprehension about losing their autonomy in homes. Thus, a clear and well-

informed framework is crucial to guarantee the programme effectiveness (VAN 

MIDDELKOOP; VRINGER; VISSER, 2017). This statement is supported by the study 

of Rubens et al. (2017), which highlights the need for educating occupants to enhance 

the performance of the building. For this effort, educational tools and technologies can 

be taken into consideration (HAWAS; AL-HABAIBEH, 2017). Furthermore, the 

relationship between energy performance and social equity is discussed (CHEN; TAN; 

BERARDI, 2018). A recent conclusion is that efficient buildings are more present in 

wealthy locations (GOLUBCHIKOV; DEDA, 2012; ZOU; ZHAO; ZHONG, 2017). 

Finally, we highlight that the efforts towards a sustainable and efficient society 

must begin on a small scale (from neighbourhoods or apartment complexes) 

(HACHEM, 2015). 

 

4.1.3. Strategies to Overcome Climate Change Effects 

 

The energy performance of buildings is closely related to the thermal 

performance and, as climate changes the thermal performance of buildings, they will 

have a different performance from what was designed. Climate change affects the 

weather making extreme events more frequent (BATES et al., 2008). In this panorama, 

high-insulated buildings might not provide the best performance (ROBERT; 

KUMMERT, 2012). Overcoming climate change interference in building performance 

is a significant challenge. A comprehensive overview of the impact of climate change 

on building performance is presented by Yau and Hasbi (2013). 

Studies that addressed this issue proposed strategies of isolation and assessed it 

using future-estimated weather files (BERGER et al., 2014; DIRKS et al., 2015; 

JENTSCH et al., 2013; NIK, 2016; SHEN, 2017; WANG; CHEN, 2014). Usually, a 
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simulation-based approach was employed on archetypes modelled from stock 

information. For example, Nik et al. (2013) used information from 153 existing 

buildings and simulated the energy performance to assess the impact of climate change 

considering uncertainties. 

A relevant study presented by Nik et al. (2015) proposed a method to improve 

performance resilience of buildings due to climate change. The study evaluated 

scenarios of the energy performance of housing that receive five ECM: (a) lighting 

system improvement; improvement of U-values of basement (b); façade (c); ceiling (d); 

and fenestration (e) replacement. Results showed the averages and standard deviations 

of the building performance according to each strategy in different time scales for each 

scenario. A similar study was conducted in Argentina by Filippin et al. (2018). A group 

of ten buildings was clustered and similar retrofits strategies proposed according to their 

impact on energy consumption. 

The “post-carbon cities” is a new term towards reducing energy demand to avoid 

the impact on the environment caused by energy usage in buildings. The concept of 

“post-carbon cities” is to turn most of the buildings of a city into ZEB employing the 

energy and cost-effective retrofits. This concept relies on minimising the influence of 

occupants (BECCHIO et al., 2016). However, in the review of Groove-Smith et al. 

(2018), it is presented that passive buildings and low energy buildings have more 

efficient economic and energy performance (rather than ordinary and self-sufficient 

buildings). A worthy example is the stock analysis for ZEB evaluation presented by 

Fokaides, Polycarpou and Kalogirou (2017), who analysed the social housing building 

stock in regard to the EPBD in Cyprus. The study showed the possibility of decreasing 

energy consumption due to the social housing stock renovation towards ZEB. Yet, it 

also highlighted the importance of considering aspects such as energy end-use and 

lifestyle of the users to provide reliable outcomes. 

Therefore, from a broader perspective, the stock-level analysis is a suitable 

approach to assess the impact of climate change during the operational performance of 

buildings. Using a population analysis is useful for either identifying strategies to 

mitigate climate change effects and assessing the energy demand associated with 

geographic attributes.  
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4.2. Level of Information 

 

As observed in building-level analysis, stock-level studies used different levels 

of information regarding measured energy consumption. Table 2.6 presents a summary 

of the different time resolution of energy consumption according to each identified 

purpose of the study. 

 

Table 2.6 – Time resolution of energy consumption in the stock-level analysis. 

Purposes 
Time 

Resolution 
Sources 

Benchmarking 

Hourly (SABAPATHY et al., 2010) 

Monthly 

(ALFARIS; ABU-HIJLEH; ABDUL-AMEER, 2016; BOEMI 

et al., 2011; KIM; KIM; LEE, 2019; LI, 2008; MATA; SASIC 

KALAGASIDIS; JOHNSSON, 2014; SCOFIELD, 2013; 

SCOFIELD; DOANE, 2018) 

Annually 

(AKSOEZEN et al., 2015; ALFARIS; ABU-HIJLEH; 

ABDUL-AMEER, 2016; BHATNAGAR; MATHUR; GARG, 

2019; BRAULIO-GONZALO et al., 2016; BURMAN; 

MUMOVIC; KIMPIAN, 2014; COTTAFAVA et al., 2018; 

CSOKNYAI et al., 2016; HONG et al., 2014; HSU, 2014; 

KOO; HONG, 2015; NÄGELI et al., 2018; ÖSTERBRING et 

al., 2016,  2018; PAPADOPOULOS; BONCZAK; 

KONTOKOSTA, 2018; PAPADOPOULOS; KONTOKOSTA, 

2019; PARK et al., 2016; PITTAM; O’SULLIVAN; 

O’SULLIVAN, 2014; TAYLOR et al., 2018; YANG; ROTH; 

JAIN, 2016,  2018) 

Regulations, 

directives and 

guidance for 

the building 

stock 

Weekly (RUBENS et al., 2017) 

Monthly 

(ABELA et al., 2016; GIANNIOU et al., 2015; GIOVANNINI 

et al., 2014; GOLDSTEIN; ELEY, 2014; HACHEM, 2015; 

PISELLO et al., 2014b; PRITCHARD; KELLY, 2017) 

Annually 

(BURATTI; BARBANERA; PALLADINO, 2014; CHEGUT; 

EICHHOLTZ; HOLTERMANS, 2016; DWAIKAT; ALI, 

2016; FAZELI; DAVIDSDOTTIR, 2018; FERREIRA; 

ALMEIDA; RODRIGUES, 2016; GOLUBCHIKOV; DEDA, 

2012; MHALAS et al., 2013) 

Strategies to 

Overcome 

Climate 

Change Effects 

Annually 
(BECCHIO et al., 2016; FILIPPÍN; FLORES LARSEN; 

RICARD, 2018; GROVE-SMITH et al., 2018) 

Monthly (FOKAIDES; POLYCARPOU; KALOGIROU, 2017) 

20-year 
(NIK; MATA; SASIC KALAGASIDIS, 2015; NIK; SASIC 

KALAGASIDIS, 2013) 

 

Tabula and Episcope projects support stock-level analysis because they provide 

a large dataset of annual energy consumption in Europe. Furthermore, building physical 

characteristics such as transmittance and building age were provided. 

In this topic, a remarkable study by Papadopoulos et al. (2018) assessed the 

energy performance of a sample of buildings over time. Although the study utilised 
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yearly data, the authors pointed out that the granularity of the measured data can be a 

target to be studied. A high granularity of energy end-uses could help to explain factors 

that drive energy usage. 

We observed a low resolution of the measured data in benchmarking studies. 

This limitation demonstrates the need for high granularity (both spatial and temporal) of 

energy end-use data (TAYLOR et al., 2018). The low-resolution data in stock-level 

studies are associated with the definition of EUI (kWh/m².year). Nevertheless, with the 

advance of technologies in building automation and building performance analysis, a 

new indicator for EUI is crucial (KIM; KIM; LEE, 2019). 

 

4.3. Methods and Tools 

 

We summarised the methods and tools used by stock-level studies in two main 

issues. The first issue is the development of benchmarks, which is related to the 

methods used to represent the typical values of energy use intensity of the stock. The 

second issue is the stock modelling, which describes methods used to summarise all the 

stock heterogeneity into representative groups. The main difference between those two 

issues is that the development of the benchmarks implies in quantifying energy usage 

while stock modelling entails classifying according to the qualitative features of the 

buildings.  

Table 2.7 shows a summary of the methods and tools observed in this approach. 
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Table 2.7 – Summary of methods and tools used for the stock-level analysis. 

Issue Methods (Tools) Sources 

Development 

of benchmarks 

Simple normalization 

(Statistical analysis) 

(SCOFIELD, 2013; SCOFIELD; DOANE, 

2018; TAYLOR et al., 2018) 

Statistical analysis 

(Regression analysis) 

(AKSOEZEN et al., 2015; ALFARIS; ABU-

HIJLEH; ABDUL-AMEER, 2016; 

BURMAN; MUMOVIC; KIMPIAN, 2014; 

HONG et al., 2014; KIM.; KIM; LEE, 2019; 

LI, 2008; PAPADOPOULOS; 

KONTOKOSTA, 2019; YANG; ROTH; 

JAIN, 2018) 

Machine Learning  

(Artificial Neural Network, 

Genetic Algorithm, 

Bayesian Network, other) 

(BURATTI; BARBANERA; PALLADINO, 

2014; KOO; HONG, 2015; PARK et al., 

2016) 

Stock 

modelling 

Cluster analysis from 

characteristics  

(K-means or machine 

learning) 

(BEN; STEEMERS, 2018; BHATNAGAR; 

MATHUR; GARG, 2019; COTTAFAVA et 

al., 2018; FOKAIDES; POLYCARPOU; 

KALOGIROU, 2017; MATA; SASIC 

KALAGASIDIS; JOHNSSON, 2014; 

PAPADOPOULOS; BONCZAK; 

KONTOKOSTA, 2018; STREICHER et al., 

2018) 

Synthetic generation 

(iterative proportional 

fitting) 

(NÄGELI et al., 2018) 

Geographical aggregation  

(GIS, Google Street-view, 

Google Maps) 

(AKSOEZEN et al., 2015; BRAULIO-

GONZALO et al., 2016; KOO; HONG, 2015; 

ÖSTERBRING et al., 2016; PITTAM; 

O’SULLIVAN; O’SULLIVAN, 2014; 

YANG; ROTH; JAIN, 2016) 

 

In the stock-level analysis, the buildings are treated as a population. Thus, 

summary metrics are needed to express both the overall stock performance and a single 

performance of the building when compared with pairs. Benchmarks are reference 

values to establish those summarised metrics. Although benchmarking is a quantitative 

approach, stock modelling (through archetypes) is often adopted to obtain benchmarks 

because surveying all building stock is expensive and time-consuming. In stock 

modelling, we identified two main approaches to group buildings: clustering by 

characteristics and aggregating by geographical location. 

 

4.4. Defining Building Stock: Geo-Stock versus Type-Stock 

 

Some studies have defined the building stock as a geographic delimitated group 

of buildings (e.g., neighbourhood, city) (BRAULIO-GONZALO et al., 2016; 
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CSOKNYAI et al., 2016; GIANNIOU et al., 2015; GIOVANNINI et al., 2014; 

ÖSTERBRING et al., 2016,  2018; PAMPURI et al., 2017; YANG; ROTH; JAIN, 

2016,  2018). This definition implies in heterogeneous typologies compounding the 

stock. Other studies have defined the building stock as the group of same-type buildings 

(e.g., schools, bank branches, office buildings, residential buildings) (BEN; 

STEEMERS, 2018; BORGSTEIN; LAMBERTS, 2014; BURMAN et al., 2014; 

COTTAFAVA et al., 2018; HONG et al., 2014; LI, 2008; MARRONE; GORI, 2018; 

SCOFIELD; DOANE, 2018; STREICHER et al., 2018), which implies in different 

location of each building. 

Therefore, there is an overlapping of definition of “building stock” that needs 

clarification. By specifying the terminology, one makes clear what the boundary 

condition of the study is. 

We propose a distinction in “building stock” definition into: 

• Geo-building stock, which is the group of buildings composed of 

geographic delimitation. For example, this terminology is suitable for 

addressing urbanisation-level and inter-building effects, the interface 

between the built environment and urban environment, land use and 

occupation, and others; 

• Type-building stock, which is the group of buildings comprised of 

buildings that share a purpose. It is adequate for benchmarking, 

performance comparison among pairs, establishing guidelines for 

construction, operational scheme guidelines, and others. 

 

4.5. Conceptual Model 

 

In the stock-level analysis, the time resolution of the energy use intensity data is 

different according to each purpose of research. Therefore, we used this time resolution 

as a reference to organise the research purposes and to outline the conceptual model of 

the stock-level analysis (Figure 2.3). 
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Figure 2.3 – Conceptual model of the stock-level analysis. 

 

The literature review about operational energy performance addressed in the 

stock-level analysis reveals three primary purposes of research: benchmarking, 

regulation and directives for the building stock; and strategies to overcome climate 

change effects. Nowadays, there are widely known benchmarking methods (BOEMI et 

al., 2011; BORGSTEIN; LAMBERTS; HENSEN, 2016; BUCK; YOUNG, 2007; 

CHUNG, 2011; CHUNG; YEUNG, 2017; KOO; HONG, 2015; LEE, 2008,  2009b; LI, 

2008; LI; HAN; XU, 2014; ÖSTERBRING et al., 2018; PAPADOPOULOS; 

KONTOKOSTA, 2019; RUZZELLI et al., 2010; SABAPATHY et al., 2010; 

SCOFIELD, 2013; SCOFIELD; DOANE, 2018; SEYEDZADEH et al., 2018; 

TAYLOR et al., 2018; YANG; ROTH; JAIN, 2018) that use different complexity levels 

for obtaining benchmarks. However, there is a lack in finding an adequate indicator of 



75 

 

the energy use intensity, since kWh/m².year is not always suitable for all typologies 

(BORGSTEIN; LAMBERTS; HENSEN, 2016; HONG et al., 2014; MATA; SASIC 

KALAGASIDIS; JOHNSSON, 2014; MATHEW et al., 2015) or end-uses 

(BORGSTEIN, LAMBERTS, 2014; GUERRA-SANTIN; TWEED, 2015b; HSU, 

2014). Additionally, the time reference is questionable (KIM; KIM; LEE, 2019): what is 

an adequate time resolution to benchmark a building (monthly, yearly, or even weekly)? 

The development and implementation of dynamic benchmarks become an interesting 

trend of research. Some studies already proposed dynamic rating schemes (FAZELI; 

DAVIDSDOTTIR, 2018; KOO; HONG, 2015). However, the proper investigation of a 

reliable framework integrating building, government and energy companies is required. 

Benchmarking is supported by the information provided by regulations and 

directives that obligate the declaration of energy performance using specific protocols 

(YE; ZUO; WANG, 2019). In the design stage (for new buildings), regulations and 

directives guide through guidelines for construction. The effectiveness of those 

guidelines is often tested by some studies (BURMAN; MUMOVIC; KIMPIAN, 2014; 

CHEGUT; EICHHOLTZ; HOLTERMANS, 2016; FAZELI; DAVIDSDOTTIR, 2018; 

LOWE; CHIU; ORESZCZYN, 2018; MARCELO, 2013; SUNIKKA-BLANK; 

GALVIN, 2012; WATTS; JENTSCH; JAMES, 2011), and enhancements of the 

guidelines are proposed (ABELA et al., 2016; BALLARINI; CORRADO, 2017; 

BURATTI; BARBANERA; PALLADINO, 2014; COLE; FEDORUK, 2015; 

FERREIRA; ALMEIDA; RODRIGUES, 2016; MAFIMISEBI et al., 2018; 

MOGHADAM; LOMBARDI; MUTANI, 2017; PISELLO et al., 2014b; STREICHER 

et al., 2018). A remarkable insight of research regarding incentives to upgrade buildings 

is to study the consideration of the human dimension (HAWAS; AL-HABAIBEH, 

2017; RUBENS et al., 2017; VAN MIDDELKOOP; VRINGER; VISSER, 2017). In 

existing buildings, regulations and directives establish a certain level of performance, 

require transparency in performance of buildings to society, and specify guidance to 

improvement in buildings and systems. Additionally, stock-level analysis opens the 

opportunity to utilise Geographic Information Systems (GIS) to develop innovative 

ways to address the stock for benefiting both the government and the society 

(GIOVANNINI et al., 2014; MHALAS et al., 2013; ZOU; ZHAO; ZHONG, 2017). 

Overcoming Climate Change effects in buildings, initiatives around the world 

(especially in Europe and the United States) established directives to turn buildings 

more resilient and assess those directives using future scenario analysis. Improvements 
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in building insulation and fenestration technologies were tested under future weather 

conditions (BERGER et al., 2014; DIRKS et al., 2015; FILIPPÍN; FLORES LARSEN; 

RICARD, 2018; JENTSCH et al., 2013; NIK, 2016; NIK; MATA; SASIC 

KALAGASIDIS, 2015; NIK; SASIC KALAGASIDIS, 2013; SHEN, 2017; WANG; 

CHEN, 2014). However, most of those studies are based on future scenario estimations 

– which make sense since climate change implies in trends on the weather. This 

condition favours the use of computer simulation and exposes opportunities to enhance 

simulation engines by considering operational routines more realistically. Thus, one can 

ask: how the uncertainties in operational schemes can be overcome in simulation 

modelling? Also, strategies and programmes to decarbonise building operational energy 

usage are tested – including transitions of the stock towards ZEB (BECCHIO et al., 

2016; GROVE-SMITH et al., 2018). 

Therefore, considering buildings as a population brings both solutions and 

challenges. It is noteworthy that the visualisation of energy performance in scale 

extremally facilitates energy management and supports public policies definitions. 

Furthermore, by providing reference values, the benchmarking not only instigates 

competitivity but also allows to set new targets of high performance for the building 

sector and to clarify the energy consumption (turning the consumption visible). 

 

5. Discussions 

 

5.1. Interfacing Building-Level and Stock-Level Analyses 

 

By considering the operational performance, the building-level analysis differs 

from stock-level analysis, especially due to the energy data resolution. We observed that 

building-level analysis usually employed high-resolution data because it aimed to 

examine specific buildings issues. Otherwise, stock-level approaches generally 

employed data from energy bills and EPCs once aimed to explore large scale solutions. 

We understood that there is no fixed rule to delimit boundaries between stock 

and building-level. Where stock-level scale begins and building-level ends depend on 

the analysis performed, available data, and expected results. Thus, the boundaries 

conditions are defined in each study. Furthermore, it is important to highlight that those 

definitions are not mutually exclusive – in fact, it is the opposite: the stock contains 

buildings. In this study, we proposed this differentiation of terminologies to promote 
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distinct perspectives to the building performance analysis in order to understand the 

energy usage phenomenon. 

The interface of those scales could be the key to consider elements hitherto hard 

to consider in building energy modelling. For example, using large vegetation as 

shading elements were considered only in building scale (MANGONE; VAN DER 

LINDEN, 2014); however, this is a clear case to use urban building energy modelling 

(UBEM) which means to consider the stock-level approach as well. 

The modelling of the weather is a significant issue in building performance 

analysis. This problem extends to the data resolution (CRAWLEY; LAWRIE, 2015), 

availability (JENTSCH et al., 2013; JENTSCH; EAMES; LEVERMORE, 2015), 

variability (HUBBARD et al., 2005) and, currently, to the climate change consideration 

(BELCHER; HACKER; POWELL, 2005; DICKINSON; BRANNON, 2016; 

HACKER; CAPON; MYLONA, 2009; KIKUMOTO et al., 2015) in building 

performance analysis. There are advanced studies on the representativeness of weather 

data to improve simulations. However, the integration of building-level and stock-level 

analyses (in this case, specific to urban-level) is applicable. In fact, in real-world the 

buildings are not isolated – they are inserted into social and environmental contexts. 

Thus, adjustments in building modelling must be implemented to consider microclimate 

effects, inter-building interactions, and building-urban interaction (REINHART; 

CEREZO DAVILA, 2016). 

Top-down and bottom-up approaches are strategies of information processing 

that were adopted in some studies to create benchmarking by adequately considering the 

building context according to the level of information. Top-down is described as a 

method that uses a comparison of a building against its pairs (HONG, 2014). Otherwise, 

bottom-up methods use specific building context and theoretical analysis (BURMAN et 

al., 2014). Those terminologies are somehow similar to stock-level and building-level 

analyses (respectively) that we identified in this literature review. 

Along these lines, Annex 70 (Building Energy Epidemiology: Analysis of real 

building energy use at scale) played an important role to establish a proper framework 

in studying the stock-level approach. The concept of Energy Epidemiology 

(HAMILTON et al., 2013) is an essential step towards comprehending energy usage in 

building stock (HAMILTON et al., 2017). Additionally, this approach can be used not 

only to promote insights to improve the building stock (HAMILTON et al., 2014) but 

also to encourage progress in energy usage understanding (HAMILTON et al., 2016; 
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HUEBNER et al., 2016; HUEBNER et al., 2015). Ultimately, considering each building 

as an individual subject and the building stock as a population, it can be the key to 

achieve healthy and environmental-friendly built environments (RYDIN et al., 2012). 

 

5.2. Research opportunities 

 

Along with the two conceptual models for both building-level and stock-level 

approaches, we raised questions that might be explored in further research 

opportunities.  

The evaluation of energy performance of buildings at the operational stage relies 

on quantitative assessment of energy consumption through measurements. Despite the 

innovations in collecting energy data due to smart meters, IoT innovations and building 

automation techs, the representativeness of the time resolution is still an open question. 

Therefore, time series analysis in building performance analysis is a relevant topic that 

deserves exploration in both building-level and stock-level analyses. Going forward, 

specific questions regarding time resolution can be outlined, such as: What is the proper 

frequency for energy monitoring? How long should be the energy monitoring to 

describe the energy use pattern accurately? How specific the data should be to assure 

representativeness in benchmarking? Therefore, all the data available due to the 

increasing automation in buildings opens the opportunity to high-resolution 

benchmarking.  

Meanwhile, the heterogeneity among buildings is a challenging issue to be 

considered in building performance analysis. We inferred that such heterogeneity 

affects energy usage because of the variations in usage patterns and operations schemes. 

In fact, buildings are recently described as a cyber-physical-social system 

(BAVARESCO et al., 2019). Therefore, some topics of study can be drawn, such as: 

How to consider uncertainties due to user behaviour in building performance analysis? 

How to overcome uncertainties due to operational performance in the simulation? 

Going through the optimisation of the building operation: How specific should be an 

operation programme to optimise energy use and avoid hampered usage? 

Therefore, this literature review is expected to contribute to the efforts of the 

ongoing pieces of research by providing disruptive perspectives regarding managing 

and improving energy performance of buildings during the operational stage. 
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6. Conclusions 

 

In this paper, we presented a review of energy performance of buildings during 

the operational stage. A survey in web directories was performed using systematic 

research and adequate terms. An up-to-date (of the past ten years) literature survey was 

applied to determine the trends of research in this field. Using a meta-analysis approach, 

we identified two main research approaches: one considering the building-level and 

other the stock-level. Then, we used this differentiation to carry out the structure of this 

paper. Regarding each approach, it was possible to identify the leading purposes that the 

studies addressed. A general aspect of this review was the contemplation of the 

empirical assessment in all studies reviewed, by surveying the level of information 

(granularity of the measured energy data) and methods and tools employed in the 

analysis. 

The building-level analysis was defined as a perspective that assumes the 

building as the subject of study. From this perspective, we identified four principal 

purposes of research: performance gap, energy audit, retrofit savings assessment and 

ZEB evaluation. Since the prediction of energy consumption has been the main 

objective of energy building performance from several studies hitherto (WEI, 2013), the 

performance gap became a critical issue to be mitigated (SCOFIELD, 2009). The 

proposition to improve existent buildings using retrofits and the concept of ZEB has 

raised to decarbonise the existent building stock. Hence, the consideration of the 

occupant behaviour on buildings energy performance assessment as well as the 

operation and maintenance of systems are the leading issues to be overcome to achieve 

high-performance buildings. We defined as a stock-level approach the studies that 

considered a group of buildings as the system of study. Benchmarking, regulation and 

directives for buildings and evaluation of strategies due to climate change were the main 

purposes of research explored in this approach. Abstracting the relevant features of the 

stock is essential to proceed with the large-scale analysis. For instance, the 

establishment of referenced values allows performance comparison among pairs. The 

statistical analysis provides inferences regarding improvements opportunities in a 

particular typology, and it aids evaluating the effectiveness of policies and regulation to 

enhance energy efficiency. Thus, we concluded that stock-level analysis is a field with 

extensive potential to improve building performance analysis. 
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The interface between both approaches was discussed. A remarkable benefit 

from the assumption of each approach is the consideration of the climate, urban, and 

social context in building performance analysis. In this sense, we encourage researchers 

to specify the boundary condition adopted in the study. For both approaches, building 

and stock-level, we summarised the level of information and the methods and tools 

applied in the studies. By analysing the level of information, we concluded that 

building-level analysis employed higher time resolution than stock-level analysis. 

However, with the increasing use of technologies in the built environment, it is possible 

to bring high-resolution levels to stock-level approach as well. 

Furthermore, this action could improve stock detailing and promote solutions for 

energy efficiency. The summary of methods and tools underlined the connections 

between appropriated methods and specific purposes. Moreover, we could identify a 

need for clarification on the stock definition. Then, a specification was proposed: geo-

stock for grouping buildings according to a geographic delimitation; and type-stock for 

grouping buildings according to characteristics in common (such as usage or purpose).  

Finally, conceptual models were drawn to both building-level and stock-level 

analyses. In these conceptual models, we mapped the actual situation in the field and 

established relationships between the purposes identified. By sketching the conceptual 

model, we could recognise insights for opportunities for further research. A remarkable 

prospect for investigation is the study of representativeness of time resolution regarding 

energy measurement. Since energy monitoring is a challenging and time-and-money 

consuming task – especially in measuring end-uses consumption – optimising energy 

monitoring could benefit the building energy managing sector. Automated and smart 

buildings can take advantage of sensors and energy meters, but a large portion of 

buildings do not have such technologies implemented yet.  

Therefore, the study of energy performance of buildings during the operation 

stage is a promising path to achieve the comprehension of energy usage. Studying the 

management of empirical data, structuring adequate frameworks to improve 

construction and building renovation, and applying real-world information in prediction 

models are duties that certainly will drive our society to more efficient buildings. 
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3. Overview of the school building stock in Brazil 

 

This Chapter is the transcription of the following paper: 

 

Mapping the energy usage in Brazilian public schools 

Authored by Matheus Soares Geraldi and Enedir Ghisi. 

Published in Energy and Buildings (ISSN: 0378-7788), volume 224, in 2020, 

and catalogued through the DOI: https://doi.org/10.1016/j.enbuild.2020.110209 

 

Abstract: 

Understanding the actual conditions in school buildings regarding energy usage and 

environmental satisfaction gives way to the development of consistent building stock 

modelling. In the Brazilian context, a deep-rooted inefficient structure of energy 

management implies a lack of mapping the actual conditions of the public schools. 

Therefore, this paper aimed to assess the actual energy performance of school buildings 

in Brazil. This paper innovates by integrating questionnaire responses and billed energy 

data to allow the construction of an evidence-based stock model through a statistical 

approach, which was never per- formed for the Brazilian building stock. Moreover, the 

association of energy use intensity (EUI) with the core aspects of building 

characteristics, occupancy, environmental satisfaction and necessary improvements 

mapped the relevance of such aspects in energy usage patterns. Additionally, a 

discussion of the EUI indicators was addressed. Results showed an unprecedented broad 

panorama of the school building stock in Brazil and its main features. In terms of 

statistical analysis, the Weibull distribution was appropriate for representing the 

continuous variables of the stock. The EUI as a function of the number of students was 

more suitable than the floor-plan area to achieve a reliable energy performance analysis. 

Several tests were performed to assess if the energy management, environmental 

satisfaction and maintenance practices impacted the EUI or not. Finally, the main 

conclusion was that the stock model obtained was simple and fit the energy 

management structure in the Brazilian scenario. 

 

  

https://doi.org/10.1016/j.enbuild.2020.110209
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1. Introduction 

 

School buildings have a fundamental role in society, acting as a vector of 

information for several different groups. The activities taken in school buildings may 

not only benefit the school environment itself but also reach the social and family 

circles of students and employees (MALDONADO, 2016). Understanding the energy 

consumption in those buildings can lead to both effective actions of upgrading the 

energy performance and promoting the construction of a conscious energy usage culture 

in society. 

Analysing the energy performance in buildings is important to both compare the 

performance among technologies and identify patterns of consumption (WILDE, 2018). 

At stock-level, the energy performance analysis provides information to estimate future 

consumption and also to develop public policies regarding energy efficiency, which 

improves resources management (GERALDI; GHISI, 2020a).  

The International Energy Agency (IEA) carried out the annexe 15 (Energy 

Efficiency in Schools) between 1988 and 1990 dedicating efforts specifically to study 

school buildings. The main outcome was a set of guidelines for the construction of 

school buildings in order to achieve a certain level of energy efficiency considering 

mainly Heating, Ventilation and Air-Conditioning (HVAC) and water heating (IEA, 

1996). Aspects such as insulation of the envelope and window-to-wall ratio were also 

addressed. 

Since then, Schools have been the target of many studies on building energy 

performance. In the building-level, some studies focused on identifying key indicators 

(LOURENÇO; PINHEIRO; HEITOR, 2014), lessons learned from retrofits 

(BURMAN; KIMPIAN; MUMOVIC, 2018; ZINZI et al., 2016) and assessing low 

carbon performance (KOLOKOTSA et al., 2018; LIZANA et al., 2018; VIVIAN et al., 

2018). Meanwhile, at the stock-level, other studies addressed issues such as the overall 

energy performance evaluation (MONCADA LO GIUDICE et al., 2013), the 

characterisation of the stock (BURMAN; KIMPIAN; MUMOVIC, 2018; KIM et al., 

2019; WANG, 2019; WILLIS et al., 2011), stock modelling using cluster analysis 

(MARRONE; GORI, 2018), and the experiences from LEED certification (SCOFIELD; 

DOANE, 2018). 

Table 3.1 summarizes a literature review of the previous works regarding energy 

performance assessment in school buildings. A non-exhaustive list is presented with 
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major contributions important for this study. Table A.1 shows the authors, their 

contributions, the location of the study and the year of publication. 

The energy performance of school buildings is very related to the context where 

the building is constructed, as shown by Pereira (2014), who established a functional 

statistic benchmarking by comparing the energy usage in several countries. The authors 

proposed indicators, such as total energy consumption, energy use intensity for heating, 

electricity use, and energy use intensity in relation to the number of students and floor 

plan area. The authors underlined that internal environmental quality (IEQ) must be 

considered in the stock analysis and comparative evaluations might help to achieve 

energy savings. Besides, the authors highlighted that many studies available in the 

literature analysed the energy performance based on estimations, simulations or primary 

energy. However, it is important to address the energy performance considering the 

real-world information, such as the billed energy consumption, especially due to the 

performance gap (the lack between simulated and measured energy consumption 

(BURMAN; MUMOVIC; KIMPIAN, 2014; JONES; FUERTES; DE WILDE, 2015; 

VAN DEN BROM; MEIJER; VISSCHER, 2018). For example, in Spain, Herrando et 

al. (2016) found a difference up to 30% between the actual and predicted energy 

consumption of school buildings. The authors pointed out that the main factor that 

caused this gap was the unrealistic consideration of the user behaviour in the simulation 

model and the hardship in modelling unusual loads. This outcome highlighted the need 

to know the building stock properly in order to achieve high reliability in energy 

performance analysis. 

The energy performance is usually analysed through the energy use intensity 

(EUI) in terms of energy consumption per unit of floor-plan area or useful area 

(kWh/m².year) no matter the type of building. However, some studies discussed the unit 

of EUI for school buildings by calculating it in terms of energy consumption per 

number of students (kWh/student.year). Hong et al. (2014) compared the EUI indicator 

in relation to both number of students and floor-plan area using a regression analysis for 

schools in the United Kingdom for electric and heating demand. All coefficients of 

determination (R²) were low (lower than 0.8), and the EUI that took into account the 

floor-plan area was considered suitable to represent the total energy demand. However, 

considering only the electric demand, the EUI that considered the number of students 

was the most suitable indicator.  
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Butala (2002) presented an energy audit analysis of 24 school buildings in 

Slovenia and compared their consumption for space heating, water heating and lighting 

with the minimum standard parameters of the energy code. Results were presented in 

terms of kWh/m², kWh/m³ and kWh/student. The suitability of each indicator was 

pointed out as a niche of study because any indicator can be used depending on the 

purpose of the analysis. 

School buildings differ considerably in use, occupation, facilities, and user 

behaviour. Those differences make it difficult to summarise all features into a reliable 

statistical stock representation. For example, the level of education impacts energy 

performance (PEREIRA et al., 2014). According to the dataset of the Displayed Energy 

Certification (DEC) of schools in the UK, buildings with high school have higher 

average consumption than primary schools due to the expressive differences in patterns 

of consumption (HONG et al., 2014). Additionally, the age of the building is a 

significant aspect that impacts energy performance as well. In Canada, newer school 

buildings, which were built with more technologies and consciousness about energy 

conservation, presented a consumption lower than the average (OUF; ISSA, 2017).  

The stock modelling – which consists in modelling all relevant characteristics of 

the group of the buildings – can be used to reveal improvements. For example, Marone 

(2018) used the k-means method to cluster a group of 80 schools into two well-defined 

representative elements. Those two reference buildings were used to select scenarios for 

retrofitting using simulation models. After the retrofits, the previous simulation results 

were compared to the actual operational performance. However, the study considered 

only energy demand for space heating (kWhheating/m³). Another example proposed a set 

of improvements in school buildings in a similar way in Rome (DE SANTOLI et al., 

2014). The main intervention was the enhancement of the thermal transmittance, 

resulting in energy savings up to 20% of the energy for heating when combined with 

some small modifications in the architecture. 

Therefore, the understanding of the actual conditions in school buildings and 

their energy usage combined with a consistent stock modelling process might contribute 

for both improving the energy performance of this typology and enhancing the internal 

environmental quality (GERALDI; GHISI, 2020a). Furthermore, the correct use of 

energy contributes for preventing energy loss, providing affordable and large-scale 

access to energy, mitigating negative impacts on the environment, and, in the long run, 
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achieving sustainable development (ARMIN RAZMJOO; SUMPER; DAVARPANAH, 

2019). 

In this sense, a combination of both top-down and bottom-up approaches was 

used in two complementary studies performed based on EPC (Energy Performance 

Certificate) and DEC (Display Energy Certificate) dataset in the UK. In the first 

evaluation, Hong (2014) applied a more general approach (top-down) by using a broad 

perspective and low detailed data (low granularity). A benchmarking process was 

developed using Artificial Neural Networks (ANN) and the building characteristics as 

inputs. The output was the benchmarks of electric energy performance and heating 

energy demand. Conclusions pointed out that this approach is useful to compare 

building among pairs. In the second study (bottom-up), Burman (2014) proposed an 

intrinsic method to evaluate a building by comparing it with itself, using past 

performance as a baseline. A post-occupancy evaluation was applied in four school 

buildings for two years. The authors identified specific building characteristics by 

considering the social context, mapping operations issues and establishing the baseline. 

A very detailed simulation model was developed to analyse the energy performance and 

to propose energy conservation measures. In both studies the level of detail was 

different – and complementary –, although school buildings were used as protagonist of 

a disruptive framework to assess energy performance. Thus, an integrative approach 

was indicated as a requirement to achieve high potential for energy performance in 

large-scale school buildings. 

Nevertheless, the school building is inherently dependent on the context where it 

is inserted. Most of the studies in the literature discussed energy performance focusing 

mainly on space heating – which is a high end-use in terms of energy consumption. 

However, space heating is not a significant end-use in the Brazilian context 

(BORGSTEIN; LAMBERTS, 2014) due to the predominant hot weather, which 

requires space cooling or simply natural ventilation strategies. In addition, some recent 

studies detailed and analysed their national school building stock in terms of energy 

consumption, such as Taiwan (WANG, 2019) and Korea (KIM et al., 2019). Due to the 

lack of studies which addressed the energy performance of school buildings in Brazil, 

considering the specificities of this country, this work seeks to map the actual 

conditions of the Brazilian school buildings.  

The aim of this study is to assess the actual energy performance of the school 

buildings in Brazil and to analyse the main building characteristics and conditions that 
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affect it. It was presented an integrated approach to analyse the school buildings at 

stock-level using the combination of self-reported information and billed energy data, 

establishing a panorama regarding energy usage of this typology in Brazil. A 

quantitative cross-sectional analysis was performed using correlation tests between 

annual energy consumption and the building characteristics such as occupation, 

appliances and size features. An indicator to better represent the energy performance 

was discussed. In addition, a descriptive analysis was presented by associating such a 

performance indicator with a perception of the key person about consumption, 

satisfaction with the built environment and the need for improvements. This study is the 

first part of a broader research. It is meant as source of information for the development 

of a suitable benchmarking methodology for Brazilian school buildings, by providing a 

comprehensive analysis and valuable data regarding energy performance. 

 

2. Method 

 

2.1. Data collecting 

 

The data was prospected on energy consumption at the State Education 

Department of each of the 27 states of Brazil. Fifteen states joined in the survey and 

provided information of 5,321 schools which composed the population of this study. An 

interview was performed on the State Education Department Infrastructure sector and 

asked questions regarding the dynamics of energy management. Each State Education 

Department showed a singular process to manage the energy bills. There is no 

integrated system, and the energy bills are mostly dealt with by the finance department 

– i.e., in almost all State Education Departments, there is no analysis of the energy 

performance of the schools. Basically, the State Education Departments receive the 

energy bills and automatically pay them. They analyse the energy bill only when it is 

too expensive. 

The dataset of 5,321 schools is composed of: monthly energy consumption over 

2018; the number of students registered in that year; and the contact information 

(telephone, address and e-mail) for each school. From this dataset, only 2,315 schools 

had information about the floor-plan area (two out of the 15 Education Departments). 

Additionally, the datasets were sorted by names of the schools, which causes errors in 

matching information from different databases. Some information was lost due to the 
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process of correlating information on energy bills with other information about the 

schools. This is due to the lack of building management that most State Education 

Departments struggle within Brazil. Since the dataset provided by the State Education 

Departments was too general, a questionnaire was applied to a sample of schools to 

raise specific information. 

The sample size was calculated considering the 5,321 schools as the population 

of the study. Additional parameters were considered as recommended by the Brazilian 

National Electric Energy Agency (ANEEL, 2008) and Montgomery (2003), such as the 

level of confidence (95%) and the margin of error (5%). The sample size resulted in 359 

schools to be surveyed. The sample size was similar to the one used for other studies in 

Brazilian schools for different purposes (359 schools by (INEP, 2018)). We applied the 

questionnaires via e-mail and considered a valid response when the questionnaire was 

fully completed. 

It is remarkable to state that the voluntary aspect of the responses implies in 

supporting the aleatory nature required by the statistical data collecting. However, it 

also limited the survey to acquire data in a stratified sample mode – with the sample 

calculated for each state – which would be more suitable for this research. After the 

application, 419 valid responses were received, referring to schools all over the 15 states 

that joined the research. 

 

2.2. Questionnaires 

 

The aim of the questionnaire application was to obtain a comprehensive 

characterization of each school. This questionnaire was developed based on the 

EnergyStar ® Portfolio Manager (EPA, 2016) and on questionnaires of post occupant 

evaluation (LEAMAN; BORDASS, 2001). The platform Google Forms was used for 

the application. The target audience was the school headmaster (the Principal). The 

questionnaire was structured to obtain information regarding the building (as floor-plan 

area, building age, school facilities, etc.) as well as to qualify the energy use, 

environment satisfaction, and the necessary improvements in the building, according to 

the opinion of the Principal. The questionnaire response is related to the perception of 

the Principal – and not to a technical evaluation. For example, it was questioned about 

the perception of the Principal regarding retrofit needs, and it was not evaluate the real 

need, because it would require a technical inspection. In the same way, one questioned 
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about the perception of the Principal regarding the satisfaction of the users in relation to 

the built environment. A comfort analysis was no performed because it is time and 

resource consuming. However, this assumption is justified by the approach of 

“questionnaire applied to a key person” (LEAMAN; BORDASS, 2001). This approach 

supposes that the Principal has a broad and representative perception of the built 

environment and the occupants of the school. Figure 3.1 represents the structure of the 

questionnaire and how the contents are connected. 

 

 

 

Figure 3.1 – Questionnaire framework: contents covered and research questions. 

 

The questionnaire application was meant to characterise the stock of school 

buildings by taking advantage of the Principal as a pathway of dialogue and using the 

questionnaire to reach many schools. It is important to emphasize that Brazil does not 

have a database such as the one available on DECs in countries with a consolidated 

energy consumption declaration policy. The questionnaire is available in Appendix B. 
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2.3. Data analysis 

 

The questionnaires responses were merged with the energy consumption 

information compounding an integrated dataset. This type of integrated dataset is a 

pioneer in the context of the Brazilian public schools, once it assembled information of 

the building stock in terms of energy performance and satisfaction with the built 

environment. 

Firstly, all the dataset variables were recoded into their types: continuous, 

categoric and string variables (text-based). Then, an exploratory analysis was performed 

to check for outlier values and identify the statistical measures of the continuous 

variables, such as the quantiles, the average, the maximum and minimum values. A 

specific analysis of the energy bills of big consumers is presented, as well. 

Thenceforth, the energy performance was analysed at a stock-level to discuss the 

EUI unit and define an adequate indicator to represent the stock reality regarding the 

energy performance of buildings. 

Finally, correlations between the energy performance indicator and the 

questionnaire responses were performed. Statistical tests were used to assess the impact 

of energy management, the satisfaction with the built environment, and the necessary 

improvements on energy usage.  

 

2.3.1. Overview 

 

In this step, it was presented the statistical summary (quantiles, the average, the 

maximum and minimum values) of the continuous variables, i.e., energy consumption, 

floor-plan area and the number of students. It was shown the magnitude of those 

variables and discussed the statistic distribution that defined them. Tests of fitting were 

applied to identify the statistical parameters that represent the data distribution.  

Furthermore, it was presented a summary of the proportion of relevant 

information that the schools have. The number of air-conditioning units, classrooms and 

refrigerators were informed through histograms. The building age, the shifts of 

operation and school facilities were presented in proportion graphs. The ownership of 

fans and curtains, and the type of lighting system and air-conditioning units were 

presented as well. 
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Additionally, it was performed a comprehensive analysis of the detailed energy 

bills of schools supplied in high voltage. Data from state schools of Santa Catarina was 

used to perform this analysis. Analysing the detailed energy bills is important to address 

the consumption and demand patterns throughout the year. According to their power 

demand, the power distribution company classifies schools in either group A or group 

B.  

Group A is composed of big consumers (supplied in high voltage), and the 

energy bill is detailed with the amount of energy consumed during peak and off-peak 

hours. Also, the energy contract for schools in group A is on-demand, which means that 

the State Education Department informs a fixed value of power demand per month that 

must be available for the school. 

Meanwhile, group B is measured in monthly resolution, and only consumption is 

informed. Despite the building stock is mainly composed of schools in group B (95%), 

it was performed the analysis for schools in group A because there is no power demand 

or peak/off-peak information in group B. Additionally, as the stock is renovated, the 

schools tend to receive air-conditioning systems and upgrading in electrical 

infrastructure, moving to group A. 

Thus, it is important to analyse the schools that are already in group A to 

understand patterns and relevant information. 

 

2.3.2. Discussing the EUI indicator 

 

Defining an appropriate performance indicator is relevant to represent the 

building stock correctly. It is important to have a simple and effective indicator that can 

represent the magnitude of the building energy consumption in relation to its most 

essential characteristics. A parallel is drawn with the Body Mass Index (BMI), which is 

a widely known indicator for measuring whether a person is at his or her ideal weight. It 

is a simple but effective measure because it uses information that is easy to obtain, and 

it provides a general notion of health. In addition, when compared to milestones, it 

serves for benchmarking performance (WANG; YAN; XIAO, 2012). 

Usually, the EUI adopted is based on the floor-plan area (kWh/m².year) 

buildings in general. However, there are different units in the literature, depending on 

the archetype analysed. For example, the Chartered Institution of Building Services 

Engineers (CIBSE) presents the calculation of the EUI based on the number of people 
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to analyse prisons (kWh/prisoner.year) and number of served meals to analyse 

restaurants (kWh/meal) (CIBSE, 2008); the DOE suggests EUI based on number of 

employees to analyse office spaces (Btu/employee.year) and based on number of beds 

to analyse hotels and hospitals (Btu/bed.year) (DOE, 2013). 

Some studies examined the EUI unit for schools in other regions (HONG et al., 

2014; PEREIRA et al., 2014). However, it is important to emphasise that the energy 

consumption in those studies contemplated environmental conditioning (mostly for 

heating), which makes the consumption very related to the size of the building. In 

Brazil, most of the public schools do not have air-conditioning systems, and information 

about the built environment is surprisingly difficult to obtain, unlike the number of 

students. Consequently, an indicator based on the number of students would be 

advantageous to express a representative stock model and to achieve a reliable energy 

performance analysis. 

Hence, both indicators were tested using data of the 419 schools, i.e., EUI in 

relation to the floor-plan area and to the number of students. First, a matrix of 

correlation indicates the strength of correlations among the energy consumption, the 

number of students and the floor-plan area. In the sequence, a regression analysis using 

the general linear model was performed to fit the relation between energy consumption 

and both variables tested. The regression analysis calculates the equation of the model 

(angular and linear parameters) and its coefficient of determination (R²) measured the 

correlation of the variables point to point (adjust of the observed data to the model). 

Conclusively the p-value indicates if the model was appropriate or not. A model was 

considered appropriate when the p-value was less than 0.05 (i.e., significance level 

equal to 5%). 

 

2.3.3. Analysing the impact of the building energy management on EUI 

 

In this step, the EUI was associated with the responses of the questionnaire 

regarding the building energy management adopted by the building administration. The 

aim was to verify if there are preliminary values of energy conservation that influence 

energy usage. A hypothesis test was applied to infer if the awareness of how much 

energy the school consumes and the incentive to save energy impacted energy 

performance. The hypotheses were H0 (there is no statistical difference between the 

groups) and H1 (there is a statistical difference between the groups). The analysis of 
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responses with two or more factors was performed applying the Kruskal-Wallis test for 

non-parametric distributions. In these cases, when the Kruskal-Wallis rejected H0, and a 

post hoc evaluation was also applied using Wilcoxon pairwise test for matching samples 

comparison. This post hoc test addressed the interactions among groups. P-values less 

than 0.05 indicated a rejection of H0 at 5% of significance level, which means that there 

is statistical evidence that the EUI was different between the groups analysed. 

 

2.3.4. Analysing the impact of the satisfaction with the built environment on EUI 

 

The satisfaction with temperature, lighting and airflow were registered on a 

Likert-like scale in the questionnaire. The correlation between environmental 

satisfaction and the EUI was performed in order to verify the hypothesis that schools 

with high energy consumption provided good environmental satisfaction. To help the 

reader to understand this analysis, a Likert-like horizontal bar was plotted for each 

question showing the frequencies of the responses (from very unsatisfied to very 

satisfied) and above it, the average EUI of the schools of each category was plotted. 

Such graph elucidates the difference of the energy performance among the schools 

where people were very unsatisfied, unsatisfied, neutral, satisfied and very satisfied with 

the built environment.  

 

2.3.5. Analysing the impact of the necessary improvement on the EUI 

 

A similar analysis using Kruskal-Wallis and Wilcoxon pairwise test was 

performed to infer the influence of the necessary improvements on EUI. Responses 

regarding the frequency of maintenance and which system (HVAC, curtains, fans and 

lighting) should be improved, replaced or installed were correlated with the EUI.  

Finally, the questionnaire had an open-ended question so that the Principal could 

complement the data collection with information that was not pre-established. This 

question was analysed through text mining technique in the R environment, applying a 

tidy approach (packages: tidyr, tm, stringr, tidytext, purr, dplyr) (SILGE; ROBINSON, 

2017). This technique quantifies the frequencies of significant words (and synonymous) 

to illustrate the most frequent terms graphically. In the result of text mining, it was 

possible to recognise insights about the context of the schools. 
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3. Results 

 

3.1. Overview 

 

An overview of the most relevant variables expresses a first concept about the 

buildings that compound the stock in the study. Table 3.1 shows the summary statistics 

of the floor-plan area, which gives an outlook of the sizes of the schools; the number of 

students, which gives a notion of occupancy; and the annual energy consumption which 

informs the energy usage. 

 

Table 3.1 – Summary statistics of the continuous variables. 

Measure 
Floor-plan area  

(m²) 

Number of students  

(students) 

Annual energy 

consumption (kWh) 

Minimum value 100.00 49.00 426.00 

Lower Quantile 

(25%) 
900.00 322.25 10,796.00 

Average (50%) 1,501.69 534.50 23,667.00 

Upper Quantile 

(75%) 
3,065.50 817.75 42,190.00 

Standard deviation 1,785.34 342.16 22,543.57 

Maximum value 7,326.37 1,569.00 98,720.00 

 

The total annual energy consumption, the floor-plan area and the number of 

students, were plotted in histograms (Figure 3.2) to show the behaviour of each variable 

according to the stock characterisation. It is important to emphasise that in this step, it 

was considered the total energy consumption (from the energy bills), and no treatment 

to relativize the energy usage was performed. The histograms were built with 20 bins, 

and a curve of the Weibull distribution based on the data was plotted in red. 
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(a) 

 
(b) 

 
(c) 

 
Figure 3.2 – Histograms of the continuous variables: annual energy consumption (a), 

floor-plan area (b), and the number of students (c). 

 

 

The Anderson-Darling hypothesis test rejected the assumption that the data 

followed a normal distribution. It is possible to see through the histograms that the data 

followed an exponential distribution. A non-parametric test was applied to confirm 

which distribution best described those data and the Weibull distribution was the most 

appropriated (coefficient of determination R² equal to 0.997) in comparison with other 

distributions tested (gamma distribution R² equal to 0.970 and exponential R² equal to 

0.91). 

The Weibull distribution is a particular type of exponential distribution. It is 

commonly used for testing the lifespan of products and for representing the wind speed 
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frequency. A dataset follows the Weibull distribution if its frequency distribution can be 

represented through Equation 1: 

 

𝑓(𝛼, 𝛽, 𝑥) =
𝛼

𝛽
× (

𝑥

𝛽
)(𝛼−1) × 𝑒𝑥𝑝−(𝑥/𝛽)𝛼

    (1) 

Where: 

α is the shape parameter of the distribution {α Є |R | 0 < α < ∽} 

 is the scale parameters of the distribution { Є |R | 0 <  < ∽} 

x is the independent variable 

 

It is important to know the distribution that these continuous variables follow, as 

they may indicate appropriate statistical models for analysis. The distributions shown in 

Figure 3.2 are similar to those obtained with data from the Building Performance 

Database for the same typology in the US (LBNL, 2021). For the continuous variables 

of this study, the Weibull distribution parameters are shown in Table 3.2. 

 

Table 3.2 – Parameters of the Weibull distribution of the continuous variables. 

Parameter 

Variable (x) 

Floor-plan area 

(m²) 

Number of students 

(students) 

Annual 

consumption (kWh) 

α (shape parameter) 2.01 1.61 1.21 

 (scale parameter) 1,971.00 632.06 2,348.00 

Expected value 

[E(x)] 
1,740.53 565.95 22,114.50 

Standard deviation 

[Sd(x)] 
905.16 359.56 18,343.90 

Anderson-Darling 

statistic (adjustment 

quality) 

3.09 2.37 29.76 

p-value 0.00 0.00 0.00 

 

The parameters α and  define a Weibull distribution in the same way that the 

average and the standard deviation define a Normal distribution. The expected value is 

the equivalent to the average of the normal distribution, and the standard deviation has a 

similar function of indicating the dispersion. It is possible to notice that the hypothesis 

of those three variables following the Weibull distribution was accepted at the 
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significant level of 99% (p-value less than 0.01 in all three cases) according to the 

Anderson-Darling test. 

In order to address the relevant end uses in the school buildings, the number of 

air-conditioning units and refrigerators and freezers in each school were surveyed. It 

was raised the number of classrooms, which is related to the size of the school and 

lighting needs. Those three pieces of information are described in Figure 3.3. 

   
(a) (b) (c) 

Figure 3.3 – Histograms of the number of air-conditioning units (a), number of 

classrooms (b) and number of refrigerators (including freezers) (c). 

 

 

Figure 3.3 shows a significant number of schools with no air-conditioning. 

Regarding the number of classrooms, most schools have between 5 and 15 classrooms. 

Additionally, most schools have between 1 and 5 refrigerators or freezers. Figure 3.4 

shows the frequencies of shifts of operation, facilities and the proportion of the year of 

construction of the school buildings. 

 

 

(a) (b) (c) 

Figure 3.4 – School building characterisation due to shifts of operation (a), facilities (b) 

and year of construction (c). 
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Many of the schools operate during the morning and afternoon and night or only 

in the morning and afternoon. Regarding the school facilities, libraries, computer labs 

and cafeterias are the most frequent. Many of the schools were built between 1939 and 

1990, which means that they probably were built with poor guidance concerning energy 

performance because they are outdated buildings. 

Figure 3.5 presents the proportion of the schools with fans, curtains and the 

predominate types of lighting and air-conditioning systems. 

 

(a) Are there fans 

in the school? 

(b) Are there 

curtains in the 

school? 

(c) What is the type of 

lights? 

(most frequent) 

(d) What is the type 

of air-conditioning? 

(most frequent) 

 

Figure 3.5 – Proportion of schools that have fans (a), curtains (b) and types of light 

bulbs (c) and air-conditioning (d). 

 

 

Despite a significant number of schools with no air-conditioning (39%, Figure 

3.5.d), the majority of schools have fans in almost all classrooms (79%, Figure 3.5.a) 

which expresses some concern related to the thermal comfort of students. However, 

although curtains are considered a basic item to improve thermal and visual comfort, 

there are no curtains an expressive number of schools (36%, Figure 3.5.b). Otherwise, 

the lighting systems are more apparently efficient, once most of the lights are 

fluorescent tubes or LEDs. The predominant types of air-conditioning are split type, 

while the central type is almost not present. 
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3.2. Analysing the energy bills 

 

The energy bills can provide relevant information regarding the patterns of 

energy usage. Data of all high voltage consumer schools were used to perform a 

comprehensive analysis of the energy bills of schools in Group A, totalizing 20 schools. 

Those schools are in Florianópolis (State of Santa Catarina). It is important to highlight 

that the schools fully equipped with air-conditioning systems are in group A due to the 

power demand that the cooling appliances require. Figure 3.6 presents the monthly 

energy consumption detailed by peak, off-peak hours and reactive energy throughout 

the year of 2018. 

 

 Figure 3.6 – Average monthly consumption categorised according to the type of 

consumption of the schools supplied in high voltage (group A). 

 

Figure 3.6 shows that the most expressive consumption occurred during off-peak 

hours. Peak hours are considered between 6pm and 9pm. This is expected since the 

activity in schools occurs mainly during the day. Summer holidays often occur between 

December and February in the public education system in Brazil. The months with 

higher consumption are those following the summer holidays, but still with high 

temperatures (March, April and May). 

It is possible to see that the reactive energy consumption is existent but not 

expressive. Reactive energy is the fraction of the total energy that does not produce 
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work. Thus, the lower the reactive energy consumption, the more efficient the building 

appliances. The lowest power factor calculated for the stock analysed was 0.96, which 

indicates that the schools are a typology with good power quality. However, it is 

important to keep up with this trend because reactive energy consumption has been 

increasing in the past few years (AHMAD et al., 2019). According to Ahmad et al. 

(2019), the end uses that are leading the increase of reactive energy consumption are the 

use of laptops, mobile chargers and LED technologies. Since these technologies will be 

more and more present in schools as well, reactive energy consumption could be a 

potential issue in the future. 

The energy contract of the schools in group A is on-demand: the State Education 

Department informs and pays a fixed value of energy demand per month. If the school 

demanded more energy than this fixed value, an overpriced fee is charged on the 

exceeding energy demand. If the school demanded less energy than the contract value, 

the contract demand is charged. Thus, the difference between contracted and measured 

power demand could show if energy contracting is well defined or not. Figure 3.7 

presents the maximum, minimum and average values of these differences between 

contracted and measured power demand throughout the year. The standard deviation is 

presented by means of error bars. The ideal case will be if the difference between 

contracted and measured power demand reaches zero in every month.  

 

 

Figure 3.7 – Averages and standard deviations of the difference between contracted and 

measured power demand of the schools supplied in high voltage (group A). 
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Figure 3.7 shows that the contracting of power demand is overestimated since 

the average of differences is positive in every month. In 2018, the total remaining power 

demand was 7,834.94 kW. Meanwhile, the excessive power demand was 724.05 kW. A 

simple adjustment on the energy purchasing terms could save about R$ 122,000.00 

considering the whole year of 2018, resulting in savings of about 10% of the total 

amount paid (sum of all energy bills of group A). 

Also, as the building stock is renovated and full air-conditioning structures are 

installed, many schools probably receive electrical infrastructure renovation as well, 

shifting from Group B to Group A. This is propelled, at some level, by the impact of the 

climate change that increases global temperatures. Thus, it is important to keep in mind 

that climate change will impact future trends of the energy consumption of the Brazilian 

school stock. Concurrently, the energy consumption increases to provide indoor thermal 

comfort since the cooling demand increases due to global warming. This makes the 

greenhouse gas emissions escalate, resulting in a contribution to climate change.  

An alternative to mitigate this vicious cycle is the use of integrated Hybrid 

Power Systems. As discussed by Razmjooa et al. (2020) in Iran, the use of those 

systems is a reliable way to achieve energy sustainability in developing countries, in 

alignment with the Sustainable Development Goals from the United Nations. However, 

a concise framework is required from leaderships including adequate policies, planning 

and strategy, and enough investment on clear energy production. 

In the light of the above, two topics to be explored in further studies are the 

calculation of the impact of climate change in future trends on the school building stock 

and the effectiveness of alternatives to mitigate those impacts, such as to optimise the 

stock renovation considering Hybrid Power systems. 

 

3.3. Discussing the EUI indicator 

 

The Energy Use Intensity (EUI) is a necessary indicator to relativize the energy 

performance according to a notable characteristic of the building, once the energy 

consumption itself is too general. Usually, the EUI is presented in terms of the floor-

plan area (kWh/m².year). However, what is the adequate unit to represent the energy 

performance of a specific typology? This answer can be found in the statistical 

representation of the data. Table 3.3 presents the Spearman correlation matrix of 

continuous variables of the building stock.  
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Table 3.3 – Correlation matrix of continuous variables. 

 

Floor-

plan 

area (m²) 

Number 

of 

students 

Number of 

classrooms 

Number of 

refrigerato

rs 

Number 

of air-

conditio-

ning units 

Annual 

energy 

consump-

tion 

(kWh) 

Floor-plan area (m²) 1.00      

Number of students 0.18 1.00     

Number of 

classrooms 
0.29 0.58 1.00    

Number of 

refrigerators 
0.23 0.14 0.26 1.00   

Number of air-

conditioning units 
0.08 0.09 0.08 0.23 1.00  

Annual energy 

consumption (kWh) 
0.13 0.33 0.28 0.24 0.61 1.00 

 

The number of students presented a stronger correlation with the annual energy 

consumption than the floor-plan area (0.33). However, it is remarkable that the number 

of air-conditioning units plays an important role in energy performance once the 

correlation with the consumption was strong (0.61). It is important to highlight that the 

number of classrooms units had a slight correlation with the number of students (0.58), 

which makes sense once the school capacity (number of students enrolled) is planned 

according to the school size. 

The principal variables (floor plan area, number of students and annual energy 

consumption) were used to perform a stronger analysis employing linear regression to 

identify an adequate EUI indicator. The difference of using a correlation and a 

regression analysis is that the correlation associates two variables according to their 

variances while the regression expresses the association by ordered pairs. In this sense, 

regression analysis is a concept of association stronger than correlation. The regression 

analysis was developed using the general linear model (Figure 3.8).  
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Model fitting: 

Equation: Y = 32,912.25 + 1.944*X 

R²: 0.0115 

F-statistic: 3,341.9 (p-value: 0.06906) 

Model fitting: 

Equation: Y = 4,061.64 + 43.278*X 

R²: 0.4005 

F-statistic: 121.6 (p-value: < 2.2e-16) 

(a) (b) 

Figure 3.8 – Regression models in relation to the floor-plan area (a) and the number of 

students (b). 

 

Figure 3.8 shows a higher coefficient of determination (R²) for the regression 

model per number of students (0.4005) than per floor-plan area (0.0115). Both 

coefficients of determination were low. However, it is important to emphasize that, in 

this case, we did not attempt to prove a cause-effect model as such proposed by the 

general linear model. Instead, we took advantage of the coefficient of determination to 

measure the association point to point between the variables. In fact, a cause-effect 

model to predict the energy performance of buildings using only one variable as 

predictor will rarely be reliable because buildings are complex systems (WILDE, 2018). 

This result is supported by Song et al. (2014), who investigated the correlation 

of energy consumption, the number of students and floor-plan area using regression 

analysis for schools in the UK. The authors found that the kWh/m²year was a more 

suitable indicator for schools in the UK when the space conditioning is considered. 

While only electric energy is considered, kWh/student showed higher suitability. In 

regions with a significant presence of cold climate (such as in the northern hemisphere), 

a significant amount of energy is used for space heating. Thus, adopting the EUI in 

relation to the area or the volume of the building in those cases makes sense once the 

environment is conditioned and it is closely related to the dimension of the building. In 
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Brazilian schools, the space conditioning is present predominately in the non-classroom 

environments (49% in office rooms, such as secretariat, or the principal office, and 50% 

in libraries or laboratories), as observed in the questionnaire responses (question 18). 

There are only a few schools with air-conditioning in classrooms (8%). If the schools 

presented space heating, the correlation between the number of students and the energy 

use would not be adequate. The number of students influences electricity loads but 

reduces the heating demand due to metabolic heat gain. However, none of the schools 

presented heating systems, and the energy supply was exclusively electricity.  

Figure 3.9 shows the histograms of both EUI calculated in relation to the floor-

plan area and number of students. 

 

   

(a) (b) 

Figure 3.9 – Histograms of EUI in relation to kWh/m².year (a) and kWh/student.year 

(b). 

 

Figure 3.9 elucidated the behaviour of both EUI per floor-plan area and the 

number of students. It is possible to see that both variables have different trends and 

shapes. The EUI per floor-plan area follows an exponential distribution (red line) and 

have a high number of frequencies ranging from 0 to 10, which means many schools 

with low consumption and a big area. In contrast, the EUI in relation to the number of 

students follows a Weibull distribution (red line) and present a smoother shape. This is 

also a similar distribution of energy consumption itself. One can identify an expected 

value (peak of the red line in Figure 3.9.b) ranging from 30 to 40 kWh/student.year. 

Thus, in light of the above, we understood that EUI in terms of the number of 

students is more reasonable and reliable to express the energy use intensity for the 
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Brazilian stock. From here on, we adopted the unit for EUI as kWh/student.year for all 

analysis. 

An interesting analysis using EUI is to check the EUI behaviour throughout the 

year. Figure 3.10 presents this evaluation for schools with air-conditioning in most of 

the classrooms or at least in half of them (blue bars), and schools without air-

conditioning in classrooms (orange bars). 

 

 

Figure 3.10 – Average EUI of the schools with and without air-conditioning throughout 

the year. 

 

Schools with air-conditioning have an average annual EUI up to 60% higher 

than schools without air-conditioning. The standard deviation is higher as well, 

indicating that schools with air-conditioning are very heterogeneous. An exception is 

the EUI in December for schools with air-conditioning, which had a standard deviation 

of 19.1 kWh/student.year. This higher variability in December could be due to the 

beginning of the summer when the air-conditioning started to operate depending on the 

will of the teachers and Principal.  

Despite a smooth variation throughout the year, it is possible to verify the 

constancy of the EUI in both groups of schools. As expected, the EUI of schools with 

air- conditioning is impacted by temperature variation. However, it was noticed a major 

influence of the summer (January) and winter (July) breaks on the EUI. A relative 

higher EUI during the breaks is observed, probably due to the occupancy of the 

employees (even with reduced working time) or continuous loads such as server rooms. 
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Nevertheless, in this case, energy audits are necessary to understand the energy end-uses 

and establish the baseline. A suggestion for further works is to perform energy audits 

based on sub-monitoring and TM22 sheet to breakdown the energy consumption 

information in case studies. 

In addition, the EUIs of the schools were analysed according to each bioclimatic 

zone of Brazil (Figure 3.11). The Brazilian Standard NBR 15220 (2003) (NBR 15220, 

2005) determines and delimitates eight bioclimatic zones in Brazil. Briefly, the zones 

are characterised by the predominant monthly average maximum temperature, monthly 

average minimum temperature and monthly average relative air humidity. Those zones 

serve to define building guidelines for comfort directives. Zone 1 predominantly needs 

heating strategies during winter and passive cooling strategies during summer 

(temperate climate), while zone 8 needs cooling strategies during all year (tropical 

climate). Zones 2 to 7 refer to intermediate climate conditions. 

 

 

Figure 3.11 – EUI of the schools according to each bioclimatic zone in Brazil. Source: 

Based on (NBR 15220, 2005). 

 

Figure 3.11 shows how many observations (schools’ responses) were obtained 

for each zone. Although the zoning covers all Brazilian territory, it is important to 

mention that the proportion of schools in the sample will not match the proportion of the 

zones in the territory. For example, Zone 8 represents 53.7% of the territory, but most of 

it represents no-urban areas, such as the Amazon Forest. Likewise, São Paulo state (the 

most populated state and probably with more schools) is covered part by Zone 3 and 

part by Zone 5. 
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Figure 3.11 shows a higher average EUI for Zones 1, 7 and 8. As Zone 1 only 

has one observation, it might not represent the stock; thus, no analysis can be made. 

Zones 7 and 8 represent tropical climates, then, the use of the air-conditioning all year 

and a higher proportion of schools with air-conditioning can be possible explanations 

for the higher EUI. 

It is important to clarify that none of the schools had heating systems. Hence, all 

appliances are supplied with electricity. There is an exception for cooking food, which 

is performed using liquefied petroleum gas (LPG). However, this activity is outsourced 

by the public administration and fully controlled by the contracted companies. Thus, we 

do not have access to this information and the cooking of food was disregarded in this 

study. 

The work of Saraiva et al. (2019) compared the comfort indicators for one 

school in zone 8 (Amapá State) and one school in zone 3 (Minas Gerais State) in Brazil. 

Differences were found in the indicators for thermal comfort. The school in zone 3 

showed higher levels of comfort than zone 8. Both schools had HVAC systems; 

however, in the school in zone 8, the air-conditioning was damaged in several 

classrooms, which gives the school in zone 3 a more stable comfort condition (but as a 

consequence, higher energy consumption).  

Nevertheless, both data presented by Saraiva et al. (2019) and by this study 

elucidated that a framework considering bioclimatic zoning could explain specificities 

regarding energy performance and comfort indicators in Brazilian schools. However, it 

requires a suitable sample, stratified by zones (or states). Thus, this analysis is indicated 

for further studies. From now on, all analyses were performed considering no 

stratification. 

 

3.4. Impact of the building energy management on EUI 

 

The whole building management in Brazilian school buildings is fully performed 

by the Principal. Examples of such activities are hiring systems maintenance, appliances 

replacements, and awareness of energy savings. However, the energy bills are not 

delivered at the school – they are forwarded directly to the State Education Department 

due to a standard process in Brazil. The energy performance is closely related to the 

awareness of energy usage (NGUYEN; AIELLO, 2013). So, it was attempted to verify 
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if the energy awareness had an impact on the EUI in the school building stock under 

study (Figure 3.12). 

 

(a)  Do you (as the Principal) know the monthly 

energy consumption of this school? 

(b) Does the school motivate the employees to 

save energy? 

  
Kruskal-Wallis test 

Chi-Square = 2.4871 

degree of freedom = 1 

p-value = 0.1148 (accept H0) 

Kruskal-Wallis test 

Chi-Square = 0.9009 

degree of freedom = 1 

p-value = 0.3425 (accept H0) 
Figure 3.12 – EUI versus building energy consumption information. 

 

Both tests showed that there is no statistical difference of EUI between schools 

whose Principal knows how much the energy consumption is or not. The same 

inference was obtained regarding the awareness about energy savings or not. Yet, it is 

possible to verify in Figure 3.12.b a higher variation in “Yes” responses. In fact, there 

were much more responses as “Yes” for this question, and it was considered a bias due 

to the social desirability. It is more socially acceptable for the Principal to answer that 

he/she does motivation work in his/her school, even though his/her awareness is not real 

or effective. 

Thus, it was identified a missing link between the energy consumption place 

(school) and who pays the energy bill. The energy is consumed at the schools, but who 

receives the information about how much energy was used is the sector of payments of 

the State Education Department. There is no analysis of the energy bills to understand 

school building performance. In fact, the team that receives the energy bills is composed 

of employees of the financial area, with no expertise in energy performance. We found 

that this gap of information is the explanation of why knowing or not the energy 

performance of the school does not affect the performance of the school: there is no 
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penalty or consequence for the schools that are inefficient in terms of energy 

consumption. 

 

3.5. Impact of the environmental satisfaction on EUI 

 

Analysing the satisfaction with the built environment is important to assure that 

the building is achieving its purpose. For school buildings, providing adequate 

environmental satisfaction delivers a fertile space the teaching-learning processes. 

Figure 3.13 presents the environmental satisfaction perception as well as the average 

values of the EUI for each category in a Likert-like scale graph. As it was explained in 

Section 2.3.4, the frequencies of the Likert-like scale were plotted (values in 

percentage) and the average EUI. The size of the bars is proportional to their value, and 

a simple y-axis was plotted in order to enable visual comparison among values. For 

example, in Figure 3.13.a, 23% of the schools responded to be very unsatisfied with the 

temperature in November and December, and the average EUI of those schools is 63.18 

kWh/student/year. 
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(a) 

 
(b) 

Note: EUI expressed in kWh/student/year. 

 

Figure 3.13 – EUI versus environmental satisfaction with the temperature throughout 

the year in classrooms (a), and the lighting and airflow in office rooms and classrooms 

(b). 

 

Figure 3.13.a shows an overall dissatisfaction with the temperature. It is possible 

to notice that the hottest months (February to April and October to December) showed 

higher levels of “Very unsatisfied” and “unsatisfied” responses, while the coolest 
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months (June, July and August) presented higher levels of “Very satisfied” and 

“satisfied” responses. 

It is possible to see that schools with higher levels of satisfaction with the 

temperature presented an expressive higher average EUI. The average EUI of “very 

satisfied” responses ranged from 93.08 to 122.20 kWh/student.year, while the average 

EUI of “very unsatisfied” responses ranged from 63.18 to 72.55 kWh/student.year. 

Although variations throughout the year were observed, it is possible to infer that 

schools with higher levels of satisfaction with the temperature achieved this comfort 

condition due to air-conditioning. In fact, as shown in Figure 3.10, schools with air-

conditioning had an expressive higher EUI than schools without air-conditioning. It is 

important to mention that only increasing the energy consumption will not necessarily 

provide environmental satisfaction, once the energy might be wasted with non-efficient 

loads such as non-operational hours, or inefficient HVAC systems. Further analysis can 

be conducted to elucidate the possibility of determining how much energy one can 

employ in the building to provide adequate environmental satisfaction, considering the 

efficient use of energy.  

Due to the expressive observation of negative satisfaction with the temperature 

in all periods of the year, this outcome enlightened that the thermal performance is an 

issue to be greatly improved in the schools. High temperatures not only influence the 

quality of the built environment but also jeopardize the learning skills of the students — 

the built environment works as a key factor for productivity (VALANCIUS; 

JURELIONIS; DOROSEVAS, 2013) and health (HAMILTON et al., 2013). Therefore, 

improvements are needed to enhance the conditions of the built environment in schools. 

Figure 3.13.b showed overall satisfaction with the lighting in classrooms and 

office rooms. In general, schools presented a high level of positive satisfaction with 

lighting in both environments, with more than 70% of “neutral” to “very satisfied” 

results. However, regarding airflow satisfaction, the quality of airflow in classrooms 

presented an expressive negative satisfaction. About 41% of the responses are negative. 

This result is somehow related to the satisfaction with the temperature presented in 

Figure 3.12.a. Low levels of airflow satisfaction in the classrooms might cause low 

levels of satisfaction with the temperature, once the speed of the air is determinant to 

provide thermal comfort in mixed-mode buildings in hot climates (RUPP; GHISI, 

2017). Moreover, the indoor environmental quality (IEQ) is a determinant issue to be 

addressed. A high density of occupants, as observed in classrooms, might result in high 
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CO2 concentrations and low levels of IEQ. An integration between energy and indoor 

air quality performance is explored by Heibati et al. (2019), who raised the importance 

to consider such aspect on energy simulation models in order to predict a more realistic 

scenario. 

Analysing the correlation of the satisfaction with the lighting in classrooms and 

office rooms with the EUI, it is possible to verify that the lower the satisfaction level, 

the lower the EUI. This is explained by the lack of lighting systems to provide adequate 

environmental satisfaction with the lighting in some schools, which causes negative 

satisfaction perception. In fact, when HVAC is not considered, the lighting is often the 

end-use with a major impact on the whole-building energy consumption in schools 

(PEREIRA et al., 2014). Therefore, the inadequate lighting system (often undersized 

lighting systems) might cause an expressive difference in energy performance. 

 

3.6. Impact of the necessary improvements on EUI 

 

A priori, we knew that the schools have an important bound with the community 

where they are inserted. The association of parents and teachers are the leading actor for 

changing the structural conditions in some schools. Occasionally, the association of 

parents and teachers or a personal effort from the school crew are responsible for 

acquiring and installing air-conditioning units or fans. 

Maintenance actions are delegated from the Education Department to the 

Principal by means of a specific budget for this purpose. The Principal is responsible 

not only for the educational leadership at the school but also for infrastructure 

management. Thus, he/she is the person to recognise the maintenance and 

improvements needed in the school. 

Figure 3.14 presents the perspective of the Principal regarding necessary 

improvements according to each system (air-conditioning, fans, curtains and lighting) in 

function of the EUI of the school. 
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 (a) Does the air-conditioning system need 

improvements? 
(b) Do the fans need improvements? 

  
Pairwise Wilcoxon test 

p-value matrix: 
 (i) (ii) (iii) 

(ii) 1.000 - - 

(iii) 1.000 1.000 - 

(iv) 0.275 0.086 0.522 
 

Kruskal-Wallis test: 

 
Chi-Square = 1.6721 

degrees of freedom = 3 

p-value = 0.6432 (accept H0. A post hoc test is not 

applicable). 
  

(c) Do the curtains need improvements? (d) Does the lighting system need improvements? 

  
Pairwise Wilcoxon test 

p-value matrix: 
 (i) (ii) (iii) 

(ii) 1.000 - - 

(iii) 1.000 1.000 - 

(iv) 0.013 0.035 0.457 
 

Kruskal-Wallis test: 

 
Chi-Square = 2.1858 

degrees of freedom = 3 

p-value = 0.5347 (accept H0. A post hoc test is not 

applicable). 
Note: (i) = Needs Installation, (ii) = Needs Maintenance, (iii) = Already have enough and works well, (iv) 

= There is no need. 

Figure 3.14 – EUI versus necessary improvements, according to air-conditioning (a), 

fans (b), curtains (c) and lighting (d) in the function of the EUI of the schools. 

 

 

Figure 3.14.a shows that the statistical test rejected the hypothesis H0, indicating 

that there is a difference of EUI among the treatments of the variables analysed. The 

post hoc pairwise Wilcoxon test indicated that the average EUI between the school 
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where air-conditioning is not needed is statistically lower than the schools that need 

maintenance, at 10% of the significance level. Observing the patterns of the boxplots, it 

is possible to assume that schools which need installation and maintenance presented a 

higher average EUI than others.  

Regarding the need for improvements in fans. Figure 3.14.c shows that the EUI 

of schools where there is no need for fans are statistically higher than the schools which 

need installation and need maintenance, at 5% of the significance level. This could be 

explained because the schools with air-conditioning probably might have responded that 

there is no need for fans. 

Figure 3.14.b and d show that there is no difference of EUI in schools that need 

installation, maintenance, or already have lights and fans once the statistical test 

accepted the hypothesis H0. However, it is possible to note an expressive variation of 

EUI in the observations of Figure 3.14.d, category (ii), indicating an expressive need for 

maintenance in the lighting system. 

Regarding the air-conditioning, the maintenance might be determinant for 

energy performance. Figure 3.15 presents the analysis of different periods of 

maintenance of the air-conditioning system as a function of the EUI. 

 

 

Pair wise Wilcoxon test 

p-value matrix: 
 < 1x each 2 year 1 x each 2 years 1 x a year > 1 x a year Never 

1 x each 2 years 1.000 - - - - 

1 x a year 1.000 1.000 - - - 

> 1 x a year 1.000 1.000 1.000 - - 

Never 0.8682 1.000 1.000 1.000 - 

Not applicable 0.0302 0.0327 0.0019 1.000 1.000 

Figure 3.15 – EUI versus frequency of maintenance of the air-conditioning 

 

Figure 3.15 shows that the schools without air-conditioning (not applicable) 

have a EUI statistically lower than the schools with air-conditioning, which received at 

least 1 maintenance a year, at 5% of the significance level. This result is expected, as 

observed in Figure 3.10. Nevertheless, there was no statistical difference between 
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schools without air-conditioning and schools that frequently receive maintenance in the 

air-conditioning systems (more than one time a year). Since schools without air-

conditioning had a low EUI, this result shows that a good routine of maintenance causes 

a positive effect on the energy performance of the schools. 

Moreover, the statistical analysis could not identify a trend on the frequency of 

maintenance that affected the EUI. It is possible to see that the average EUI and the 

variation on the responses decreased as the frequency of maintenance increased. Yet, 

further investigations are required once many variables that are beyond the contribution 

of the Principal need to be taken into account for this analysis, e.g., the coefficient of 

performance (COP) of the air-conditioning and the cooling capacity. 

Additionally, an open-ended question asked about the main conditions and need 

for improvements in the school. The Principals wrote a small text about the general 

characteristics of the school and what needs to be improved. The objective of this 

analysis was to make room for discussion of aspects that were not considered before. 

After the reading of all responses, a text mining technique was applied to account the 

more frequent terms in the responses. Figure 3.16 presents the twenty terms mostly 

used. Those terms were cited more than 10 times in the responses. 

 

Figure 3.16 – Most cited terms in the open-ended responses about the need for 

improvements obtained from the text mining. 

 

The open-ended question gives way to discuss the perception of improvements 

needed in the school from the perspective of the Principal directly. It is possible to 
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verify a strong concerning regarding the quality of the classes, which indicates that the 

actual environments might jeopardise the learning process of the students.  

A need for air-conditioning and retrofit are the lead terms regarding energy 

efficiency. Additionally, the emerging term “electric infrastructure” indicated that not 

only simple installations of air-conditioning would be enough, but rather an overall 

upgrade of the electric systems. In addition, the terms “old infrastructure” informed that 

many schools operate in outdated buildings. “Classroom” is a frequent term that 

indicates these spaces as the main target for improvements. 

 

4. Conclusions 

 

This study aimed to assess the actual conditions of the school buildings in Brazil 

by establishing a comprehensive panorama regarding energy usage in those buildings. 

An integrated approach combined billed energy data and pieces of evidence from 

questionnaires responded by the school principals. The study was carried out 

considering the modelling of the stock by means of statistical inferences of a sample of 

school buildings. 

First, a broad overview provided the big picture of the main features of the 

school buildings, such as the floor-plan area, number of students, annual energy 

consumption, number of classrooms, ownership of air-conditioning, refrigerators and 

freezers, fans, curtains and type of air-conditioning and lighting. In this assessment, it 

was found that the Weibull distribution was the most suitable statistical distribution to 

represent the main features of the building stock under study. 

Likewise, an analysis of the energy consumption during peak and off-peak 

hours, reactive energy, and power demand were carried out for school buildings 

supplied in high voltage. It was noteworthy that the contracted power demand was 

oversized, and the most expressive portion of the consumption occurred during off-peak 

hours. Conclusively, as the stock renovation occurs and more school buildings begin to 

be supplied in high voltage, it must be considered careful management of the power 

demand contracting. 

Furthermore, a discussion regarding the EUI indicator to represent the energy 

performance of the stock was presented. The statistical analysis determined that the EUI 

as a function of the number of students (kWh/student.year) was more suitable than the 

EUI as a function of floor-plan area (kWh/m².year) to represent the building stock. 
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Moreover, the impact of the building energy management, environmental 

satisfaction and the need for improvements were addressed through the association 

between questionnaire responses and the EUI. It was possible to conclude that there is a 

lack of communication between building and energy management – they were not only 

functioning in distinct sectors but also had defective communication. Regarding 

environmental satisfaction, there is an expressive dissatisfaction with the temperature 

throughout the year. Therefore, the thermal performance of the school buildings stock is 

an issue to be significantly improved. As a final remark on this topic, we found that 

schools with higher levels of thermal satisfaction presented higher EUIs, and this is due 

to the use of HVAC systems. 

Additionally, by associating the EUI with the maintenance practice, we 

concluded that schools with maintenance in the air-conditioning at least once a year 

have a better performance than schools with no maintenance at all. 

This assessment can be applied for different typologies, such as industrial 

buildings or health facilities by adjusting the questionnaire. However, a set of previous 

in-situ visits should be carried out before organizing the questionnaire in order to 

guarantee coherent questions. It is important to mind the approach outcome: an 

overview of the stock actual condition with non-technical information. 

The limitations of this research and suggestions for further investigations are 

described as follows: 

- The data collection and compilation implied in some loss of data due to the 

inoperability and lack of integration of databases. The information of the 

school features was sorted by the code of the schools, but the information on 

the energy bills was sorted by the name of the schools (filled manually). 

Thus, these pieces of information often did not match.  

- The voluntary nature of the research implied in the disregarding of some 

states of the country. Thus, the results of this research are applicable only to 

the population of this study. For further works, we suggest an expansion of 

this research, including missing states. 

- It was used an approach of questionnaires applied in key person due to the 

budget and time limitations to address the environment satisfaction of the 

users inside the school. However, we suggest a broad investigation of the 

actual environmental comfort conditions of the students and employees of 

the school – considering thermal, acoustic and visual measurements 
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according to the ASHRAE 90.1 requirements. A suggestion is to use well-

established building user questionnaires, such as Building Use Studies (BUS 

Methodology) or Occupant Survey Toolkit (Berkeley), in order to obtain 

systematic responses from occupants. 

 

In summary, the outcomes of this study enable the development of politics of 

real energy performance analysis at stock-level according to the Brazilian scenario. For 

example, benchmarking school buildings in Brazil in terms of number of students can 

be more reliable than in terms of floor plan area, such as adopted by other countries. 

Finally, it was possible to conclude that the school buildings stock could be 

modelled considering the statistical attributes acquired from the billed data and the 

questionnaires. Although the stock model needs improvement, it was possible to 

achieve an overall perspective of how the school buildings are in Brazil, how the energy 

is used, what the levels of satisfaction are, and how the aspects that need improvements 

are. 
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4. Top-down building stock model 

 

This Chapter is the transcription of the following paper: 

 

Integrating evidence-based thermal satisfaction in energy benchmarking: a 

data-driven approach for a whole-building evaluation 

Authored by Matheus Soares Geraldi and Enedir Ghisi. 

Submitted to Energy (ISSN: 0360-5442), in May 2021. Under Review. 

 

Abstract: 

Energy benchmarking methods compare the operational performance of buildings with 

the corresponding stock. Multi-criteria methods emerged to consider different factors in 

benchmarking assessment. However, there is a lack in considering clear proxies for 

occupants’ thermal satisfaction in those methods based on actual data. The study aimed 

to propose a method to integrate thermal satisfaction data into energy benchmarking. 

The main innovation is to propose a single metric that takes into account energy 

consumption, construction aspects, climate conditions, system type and thermal 

satisfaction level to benchmark a building. The method consists of a statistical analysis 

to select relevant variables in the building stock, the process of discretization of such 

variables, and the developing and validation of a Bayesian Network to serve as an 

instrument for the benchmarking method. A detailed, evidence-based dataset of 426 

schools in Brazil was used. Results showed associated with occupants’ low thermal 

satisfaction were benchmarked as less efficient than those with high thermal satisfaction 

and similar energy consumption. Regarding the validation step, the benchmarking 

model achieved an error rate ranging from 17.78% to 29.17%. The main conclusion is 

that machine learning techniques can adequately integrate subjective aspects such as 

occupant satisfaction in data-driven energy benchmarking methods. 
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1. Introduction 

 

Energy benchmarking is a beneficial practice used in building performance 

analysis during the operational stage. Benchmarking the energy performance of 

buildings is widely described as a method to evaluate the building performance in 

comparison to other same-typology ones. This comparison allows building owners or 

stakeholders to recognise the actual performance of their building, identify 

inefficiencies and prospect improvements (WILDE, 2018).  

Since the energy performance of a building relies on several aspects, the 

benchmarking method must be carefully developed. The use of a simplified metric (for 

example, using only the traditional energy use intensity – EUI) might lead to an 

inaccurate result (WANG; YAN; XIAO, 2012). Thus, diverse characteristics are 

employed in the benchmarking model to make the process fair, including climate 

conditions or building systems. Literature supports that the development of a 

benchmarking method requires a comprehensive database from the building stock 

(HAMILTON, 2017). Additionally, benchmarking policies are implemented through 

actions of the public administration or instruments from organisations that promote 

energy efficiency in buildings (BORGSTEIN.; LAMBERTS; HENSEN, 2016). 

Therefore, it is important to select an adequate benchmarking method to ensure a 

trustworthy representation of the building stock.  

A comprehensive review of methods for building benchmarking was presented 

by Chung (2011) according to their properties and types of calculation. Li et al. (2014) 

presented an informative overview of benchmarking methods according to their 

complexity level (white, grey or black-box approaches) and discussed the requirements 

for selecting an adequate benchmarking model. Geraldi and Ghisi (2020a) reviewed 

methods to evaluate operational building performance and classified benchmarking 

methods by using different approaches, such as: Simple Normalisation (SCOFIELD, 

2013; SCOFIELD; DOANE, 2018; TAYLOR et al., 2018); Ordinary Least Square 

(OLS, or simple regression) (BORGSTEIN.; LAMBERTS, 2014; HONG et al., 2014; 

PAPADOPOULOS; KONTOKOSTA, 2019); Stochastic Frontier Analysis (SFA) 

(YANG; ROTH; JAIN, 2018); Data Envelopment Analysis (DEA) (CHUNG, 2011; 

LEE, 2009a); or other advanced methods, such as geostatistical approaches 

(ÖSTERBRING et al., 2018), and machine learning techniques (CHUNG; YEUNG, 

2017; PARK et al., 2016; SEYEDZADEH et al., 2018).  
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The benchmarking method must be tailored according to each typology 

(PAPADOPOULOS; BONCZAK; KONTOKOSTA, 2018). Borgstein and Lamberts 

(2014) proposed a benchmarking method for Brazilian bank branches using a bottom-up 

approach by employing the regression analysis in simulation of archetypes, based on 

Energy Star approach (EPA, 2016). Veloso et al. (2020) introduced a statistical 

evidence-based benchmarking for office buildings in Brazil. Different assessments were 

performed for fully air-conditioned and mixed-mode operation buildings. The 

benchmark method proposed presented an 81% degree of reliability, leading to 

conclusions that an evidence-based benchmark is highly reliable, but it is restricted to 

its region. The studies of Hong et al. (2014) and Burman et al. (2014) structured both 

top-down and bottom-up approaches, respectively, for benchmarking schools in the 

United Kingdom. In both studies, the aspects of analysis were different – mainly by the 

magnitude of the details. Therefore, an integrative method of both approaches was 

proposed as a condition to achieve high-quality energy performance benchmarking in 

large-scale for school buildings. Along these lines, the necessity for a comprehensive 

framework in benchmarking to consider building specificities is clear.  

Other examples of energy benchmarking applications can be found in the 

literature, such as focusing on identifying key characteristics (LOURENÇO; 

PINHEIRO; HEITOR, 2014), recognising retrofits improvements (ZINZI et al., 2016), 

evaluating low carbon performances (LIZANA et al., 2018), assessing the global 

performance (MONCADA LO GIUDICE et al., 2013), characterising (TAYLOR et al., 

2018) and modelling the building stock (MARRONE; GORI, 2018). Further studies 

assessed building stock response of energy efficiency measures. Such as the study of 

Gui et al. (2021), who evaluated green building performance relationship under the 

optic of real estate; and Kubule et al. (2020), who reported the efficiency of energy 

audits programme installed in Latvia, showing through a comprehensive benchmarking 

analysis that the programme could accomplish better results by mitigating some 

inefficiencies in the implementation. A comprehensive cross-country energy 

benchmarking was presented by Pereira et al. (2014), who compared the energy 

performance of schools in different countries, establishing a statistical benchmarking. 

The authors discussed that the indoor environmental quality (IEQ) should be considered 

as an important factor to enhance the comparison precision. 

Thenceforward, the consideration of IEQ and occupant behaviour has been 

increasingly studied in benchmarking policies. Although benchmarking is capable of 
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placing the energy performance of a building in the stock performance range, the energy 

performance is related to environmental satisfaction and operation schedule. As noticed 

by Hsu (2014), who studied benchmarking efforts of New York City, the improvement 

of the operation could bring more effective results rather than the upgrade of systems. 

Ashouri et al. (2020) agree with this result, by showing that using a framework to 

provide feedback on lighting and HVAC to occupants, an energy reduction of around 

20% is achievable. Additionally, the study of Guillén et al. (2019) compared types of 

benchmarking methods and indicators (simple energy benchmarking, regression, and 

comfort) and concluded that the benchmark outcome could be significantly different 

according to the technique or indicator used – i.e., the same building can present a good 

rate in terms of energy performance and poor quality in terms of comfort aspects. 

Consequently, environmental benchmarking methods of buildings were 

proposed to fill this gap, especially by CEN Standard EN 15203 (CEN, 2006) in 

Europe. Even though there are methods for benchmarking the energy performance of 

buildings, and there are different methods to assess environmental quality of buildings, 

the integration of both aspects is not considered. Multicriteria evaluations emerged in 

the literature to fill this gap. For example, the study of Wang et al. (2017) proposed a 

benchmarking evaluation through a TOPSIS (Technique for Order of Preference by 

Similarity to Ideal Solution) approach to assess the energy performance fairly. 

However, this data-driven approach was performed for dwellings, remaining a gap for 

non-domestic buildings since benchmarking is essentially dependent on the evidence-

based data. Other integration of IEQ criterion with energy efficiency can be found for 

office buildings (KONG et al., 2012). 

The study of Burman et al. (2014) assessed the benchmarking of school 

buildings based on simulation results – using cooling or heating degree days as the 

metric. Thus, when the integration is considered, environmental quality is not based on 

measured data. The mere integration of standard comfort metrics (such as, heating or 

cooling degree days) in benchmarking model does not assure that the building achieves 

such performance in practice.  

Therefore, a building that consumes less energy than the benchmark and 

provides poor environmental quality cannot be considered efficient. Developing 

countries generally have warmer climates, mixed-mode operation, energy poverty issues 

(lack of air-conditioning), and lack of regulations regarding thermal performance. Thus, 
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regular benchmarking models based on building construction aspects and energy 

performance are not suitable to mitigate such problems. 

This issue was noticed in our previous work (GERALDI; GHISI, 2020b), in 

which we mapped the energy performance of school buildings in Brazil, using a 

combined approach of billed data and survey evidence. It was found that 71.1% of the 

sample schools have no air-conditioning systems in the classrooms, and 46.0% have no 

air-conditioning at all. A simple classification of energy performance, based on energy 

use intensity (EUI), led to the classification of buildings with poorer indoor conditions 

as more efficient. This classification informed stakeholders that those buildings were 

not a priority to receive an intervention. At the same time, what was really happening 

was an energy poverty problem – because those buildings actually needed air-

conditioning. This can also be the problem of any country or region with the same 

issues as identified. 

Performing such evaluation requires a method that merges building 

characteristics and thermal satisfaction reported by occupants. Simulation-based thermal 

satisfaction metrics are already considered in benchmarking methods, but they are not 

necessarily representing the reality due to the performance gap (MAHDAVI et al., 

2021). There was evidence in the literature about the performance gap regarding 

thermal aspects as well (PALMA; GOUVEIA; SIMOES, 2019) – i.e., only because the 

room achieved a certain comfort temperature does not mean that there is comfort 

condition for the occupants. Because it is a qualitative metric, evidence-based thermal 

satisfaction is hard to integrate into regular numeric models. Therefore, there is a lack of 

benchmarking methods that integrate thermal satisfaction reported by the users and 

evidence-based energy performance of buildings to obtain a final classification. 

Along these lines, this paper aims to introduce a new top-down benchmarking 

method to evaluate whole-building energy performance by integrating building features, 

energy consumption, climate conditions and occupant thermal satisfaction. The output 

of the method is a single indicator that incorporates all those factors through a statistical 

approach. A database of school buildings in Brazil was used to develop the method. 

Specifically, this paper aims to select the relevant variables from the existing dataset 

and use those variables to model a useful and practical tool to help stakeholders to 

decide the physical and energy conditions of their buildings.  

The main innovation of this study is the contribution to the literature of an 

energy benchmarking method that integrates occupant-reported thermal satisfaction and 
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building features to provide a final classification of the building performance using a 

single metric instead of using several different metrics or evaluations. Also, there is a 

novelty regarding the use of a Bayesian Network for benchmarking energy performance 

of buildings in probabilistic approach, which is able to integrate subjective aspects of 

the building performance such as thermal satisfaction, with technical aspects to provide 

a whole-building evaluation.  

 

2. Method 

 

A summary of the method proposed is shown in Figure 4.1. The dataset of the 

school building stock was collected, treated and presented in our previous work 

(GERALDI; GHISI, 2020b). From the dataset, it was possible to apply a statistical 

analysis to identify the relevant stock characteristics in energy performance. Discrete 

variables were ready to be inserted in the network, but continuous variables needed to 

be discretised. Then, a Bayesian Network was created by arranging the variables into 

connected nodes and trained using part of the evidence-based dataset (50%). A cross-

validation step was performed by testing the model using the remaining dataset. 

 

 

Figure 4.1 – Flowchart of the method. 

 

 

 

2.1. Selecting a machine learning solution 

 

To tackle the problem addressed, we used computational intelligence by means 

of expert systems. Expert systems are a type of computational intelligence focused on 

replicating the knowledge or actions of an expert human being in a determined case, 

such as to diagnose a disease (VAN DER GAAG, 1996), to understand faults in systems 
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(CHEN et al., 2018), or to interpret images (MAGOULÈS; ZHAO, 2016). From a given 

problem, this type of system is composed of: a framework of the main aspects involving 

the problem obtained from human expertise, a dataset of cases already solved by 

humans, and a module to interface the framework with the user.  

In other words, expert systems use previous experience from human activity in a 

structured model to help solve future cases of the same problem. Thus, expert systems 

must have some features: the capacity to deal with uncertainties, offer explanations to 

the user, and capacity of continuous learning from the data (PEARL, 1988). In human 

decisions, uncertainties are always present; therefore, expert systems present their 

results in terms of probability values. 

Many computational intelligence techniques were reviewed during the 

development of this study (such as Artificial Neural Networks, Bayesian Networks 

(BN), Decision Tree, and Support Vector Machines). We selected Bayesian Networks to 

address the problem because they work as an excellent classifier approach 

(MAGOULÈS; ZHAO, 2016), and they are an evidence-based model supported by 

probabilities. The output is also provided in probabilities, which offers the user a degree 

of truth and not an absolute result. 

A BN is an artificial intelligence technique that proposes heuristic modelling. 

BNs are graphical acyclic models that take advantage of the conditional probability to 

correlate nodes and establish a cause-effect relation in terms of probability (PEARL, 

1988). This tool is useful for classifying purposes; it has been widely used in the health 

sector to aid the diagnosis of diseases, among other objectives. Recently, some 

initiatives have started to use BN to deal with the energy performance of buildings. For 

example: predicting monthly energy consumption (GERALDI; BAVARESCO; GHISI, 

2019); improving renewable energy systems (BORUNDA et al., 2016); diagnosing 

faults in building energy management systems (TAAL; ITARD; WIM, 2019); sizing 

rainwater harvesting systems (GERALDI; GHISI, 2019); modelling user behaviour 

patterns (BARTHELMES et al., 2017); and predicting post-retrofit energy performance 

of heating systems (O’NEILL; O’NEILL, 2016). However, there is still room for the 

exploration of BN for benchmarking the energy performance of buildings.  
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2.2. Analysing the building stock 

 

A comprehensive data survey regarding the energy performance of schools in 

Brazil was carried out by Geraldi and Ghisi (2020b). That study mapped the most 

relevant features of the school buildings through questionnaire application and 

correlated them to the billed energy consumption. The dataset provided information 

regarding energy consumption, building size, facilities, building systems, occupation, 

maintenance routine, and occupant satisfaction with temperature, lighting and airflow 

compiled in 69 variables from 426 schools (outliers, null values and incomplete 

responses already disregarded). In addition, the study compared the yearly EUI unit 

(kWh/m² or kWh/student) using statistical inference and concluded that kWh/student is 

more suitable for energy performance analysis considering the information available. 

Thus, we adopted EUI in terms of kWh/student.year to perform this model, using data 

from 2018. 

The dataset provided information of the Brazilian school building stock. 

However, it was important to select adequate variables to develop the model to provide 

an adequate fitting. From the literature review, we found fundamental aspects of the 

building performance represented by some variables. 

Furthermore, we employed a statistical analysis for each variable of the dataset 

to identify their impact on energy performance. We used the ANOVA test for the 

qualitative variables, considering the variable tested as the factor, its options as the 

treatments, and the dependent variable as the EUI. The hypothesis H0 was that there is 

no statistical difference between the treatments. P-values less than 0.05 indicated a 

rejection of H0 at 5% significance level, which means that there is statistical evidence 

that the EUI was different between the treatments analysed. Thus, the variable was 

considered in the model. 

We used the Pearson correlation analysis for the quantitative variables, 

considering the variable tested as one group and the EUI as the other group. The 

Pearson correlation determined how strong the association between two groups is, 

ranging from -1 to 1, while 0 means no correlation, and values above 0.5 or below -0.5 

indicate a strong correlation. When a strong correlation was identified, we considered 

the variable in the model. 

Table 4.1 summarises the key variables pointed in other studies, which were 

adopted in this study (X1 to X4), and the variables adopted due to the statistical analysis 
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of the dataset (X5 to X8) with their statistical test results. Other variables were 

suppressed to maintain the conciseness of this article since 69 variables were tested. 

 

Table 4.1 – Input variables considered in the model. 

Aspect Variable Type Unit 
Variable 

id 
Source 

Energy use EUI Continuous kWh/student X1 - 

Physical Floor-plan area Continuous m² X2 

(HONG et al., 

2014; 

PEREIRA et 

al., 2014) 

Occupation Occupation Continuous Student X3 

(BURMAN; 

KIMPIAN; 

MUMOVIC, 

2018; 

BURMAN et 

al., 2014; 

HONG et al., 

2014; 

PEREIRA et 

al., 2014) 

Climate Bioclimatic zone Categorical Zones 1 to 8 X4 

(HONG et al., 

2014; OUF; 

ISSA, 2017) 

Satisfaction 

with 

temperature 

Thermal 

satisfaction* 

Discrete 

(Likert-like 

scale) 

- Very 

unsatisfied 

- Unsatisfied 

- Neutral 

- Satisfied 

- Very satisfied 

X5 

ANOVA: 

F = 2.98; 

p-value = 0.01 

Systems 

Cooling capacity 

per floor-plan 

area 

Continuous - BTU/h/m² X6 

Pearson 

Correlation: 

0.68 

Type of air-

conditioning in 

classrooms 

Discrete 

- Single split 

- Single window 

- Central 

- None 

X7 

ANOVA: 

F = 5.554; 

p-value = 0.01 

Operation Operation time Discrete 
- Full day  

- Day and night 
X8 

ANOVA: 

F = 8.95; 

p-value = 0.03 
* Considering average perception throughout warmer months. 

 

According to the dataset used, many other variables that we thought would be 

relevant for the consumption did not have statistical relevance. For instance, presence of 

curtains (p-value = 0.10), presence of fans (p-value = 0.21), and satisfaction with 

airflow (p-value = 0.08). Literature also supports that the type of education influenced 

the benchmarking result; however, the ANOVA test showed that this variable was not 

significant for such a population (p-value = 0.15). This can be attributed to the 
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study's population being composed of public state schools, which have primary and high 

school in the same buildings. It is important to highlight that the variables might change 

according to the dataset, once this is a data-driven method. 

 

2.3. Developing the Bayesian Network 

 

A Bayesian Network is a visual graphic tool built to support the decision-making 

process. The network uses the frequencies of variables in the dataset as evidence (input) 

to evaluate a hypothesis's probabilities (output).  

The Bayesian networks are composed of two complementary aspects: a 

qualitative and a quantitative assessment. The qualitative aspect is an acyclic graphical 

model where each variable is a node, and the nodes are connected by directed arcs, 

which express the dependency among variables. Then, a variable “A” is connected to a 

variable “B” in the way B → A, indicating that “B” (effect) is dependent on “A” 

(cause). In other words, this is the approach of cause and effect ‘if “A”, then “B”’. If 

there is no arc between variables, it is assumed that those variables are independent.  

The quantitative aspect is composed of three probability classes (Equations refer 

to (VAN DER GAAG, 1996)): 

 

a) The probabilities of each node, which are obtained from the dataset. For each 

node B conditioned to a node A, a table of probabilities is calculated 

considering the proportion of class of B related to each class of A (Equation 

1).  

𝑃(𝐴)𝑖,𝑗 =
𝑁(𝐴)𝑖,𝑗

𝑁(𝐵)𝑗
     (1) 

where: P(A)i,j is the probability that node A presents class i, once A is conditioned by B, 

N(A)i,j is the number of cases in A that presented class j in node B, and N(B)j is the total 

number of cases in B with j class. 

 

b) The conditional probabilities are used to calculate the probabilities of 

instances (events) inserted in the network after each node's probabilities and 

the probabilities a priori are inserted. The conditional probabilities express 

the relationship between events calculated using the Bayesian Theory of 

conditional probability (Equation 2). 
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𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)×𝑃(𝐴)

𝑃(𝐵)
     (2) 

where: P(A|B) is the probability a posteriori of the event A, conditioned by the event B; 

P(B|A) is the probability a posteriori of the event B that condition an event A; P(A) is 

the probability a priori of event A; P(B) is the probability a priori of event B. 

 

c) The probabilities a priori: the probabilities of the output node obtained from 

the diagnosis of the problem. They can be calculated or assumed according 

to the experience of the developer. 

 

The Bayesian network is constructed by arranging and connecting the nodes 

(variables) and applying the probabilities of each node. After that, the user can consult 

the network by setting instances on each input node, and then the conditional 

probability adjusts the other nodes probabilities according to the event set. Examples of 

application, mathematical deductions and explanations of the Bayesian Theory and 

Bayesian Network proposition can be found in Heckerman (1996). We follow the good 

practices guidelines of Chen and Pollino (2012). 

In this study, the input nodes are the variables shown in Table 4.1 (variables X1 

to X8), and the output variable (identified as X0) was the benchmark. An initial naïve-

Bayes structure was set and continually adjusted according to the developer and BN 

performance experience. Figure 4.2 shows the final arrangement of the nodes of the BN 

proposed. The arrows indicate the conditioned arcs (connections) between nodes. 

 

Figure 4.2 – Bayesian Network structure. 
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2.4. Discretisation of the variables 

 

Variables were discretised to be inserted in the BN. All continuous variables 

were discretised using the Equal Depth Binning (EDB) method, which considers the 

variable range in N intervals, each with the same number of observations. Hence, for 

each interval it was calculated an upper and a lower limit by splitting the sorted dataset 

into N intervals according to the frequency. This method of unsupervised binning was 

adopted according to a previous work (GERALDI; BAVARESCO; GHISI, 2019), 

which concluded that this method leads to better BN performance for predicting the 

energy performance of school buildings.  

For the EUI (node X1), a log transformation was applied in the distribution to 

transform the observed distribution into a normal distribution, as suggested by Veloso et 

al. (2020). Then, a five-class scale was adopted for binning, considering equal 

frequency for each class (20% of the dataset each). This scale was based on the 

literature consensus for rating energy efficiency in buildings (scales A to E) and adopted 

by the Brazilian Energy Performance Certificate for commercial buildings (INMETRO, 

2013). According to good practices (CHEN; POLLINO, 2012), other continuous 

variables were discretised into four classes (25% of data each). Table 4.2 presents the 

criteria for the discretisation processes for the continuous variables. 

 

Table 4.2 – Discretisation criteria for the continuous variables. 

Node / Variable / Unit Classes Upper limit Lower limit 
Average 

value 

X1 

Log of EUI 

(log of 

kWh/student/year) 

Very low EUI 0.00 1.39 1.17 

Low EUI 1.39 1.61 1.50 

Average EUI 1.61 1.77 1.70 

High EUI 1.77 1.93 1.85 

Very high EUI 1.93 2.89 2.18 

X2 

Floor-plan area  

(m²) 

Small size 125.02 1228.42 734.31 

Average size 1228.42 1972.62 1554.35 

Large size 1972.62 2941.06 2377.69 

Super large size 2941.06 6623.00 3705.96 

X3 

Occupation  

(Students) 

Small student size 49 504 298 

Average student size 504 744 617 

Large student size 744 994 858 

Super large student size 994 1569 1211 

X6 

Cooling capacity 

(BTU/h/m²) 

Poorly air-conditioned  -     248.6   56.93  

Average air-conditioned  248.6   450.0   330.62  

Highly air-conditioned  450.0   956.8   597.91  

Fully air-conditioned  956.8   1,456.8   1,246.39  

 



130 

 

Qualitative variables are already discrete variables and are considered in the BN 

through their frequency. Discrete variables and their classes are described as follows: 

• X4 (Climate zone): There are eight bioclimatic zones in Brazil, so each 

category of this variable was defined as each zone. Delimitations and 

characterisation of climate zoning can be found in the national standard 

(NBR 15220, 2005). In summary, zone 1 has predominant mild 

temperatures and well-defined seasons throughout the year (subtropical 

climate), and zone 8 has warmer temperatures and varies within wet and 

dry seasons throughout the year (tropical climate). Zones 2 to 7 are 

intermediate climates. Each school of the dataset was classified 

according to the city (location) where the school is located. 

• X5 (Thermal Satisfaction): This is a discrete variable with five classes 

formed in a Likert-like scale, and it was obtained from the questionnaire 

applied in our previous work. The variable is correspondent to a question 

about the “satisfaction of users with the temperature in the classrooms” 

and had a 5-range response (“Very Low”; “Low”; “Neutral”; “High”; 

“Very High”). It is important to highlight that this information was a 

perspective of the school principal since a “questionnaire applied to a key 

person” approach was adopted, relying on the fact that a representative 

leadership in the building can provide a general perspective of the actual 

conditions throughout the year (LEAMAN; BORDASS, 2001). A survey 

from a representative sample of occupants would benefit the study; 

however, this type of survey performed on a national scale (as we 

performed) must be on-line, and we were not allowed to have contact 

information of the students due to disclosure issues. The responses were 

validated and explored in our previous work. Also, we acknowledge that 

as a limitation of our data – but not of our model, and can be solved with 

the prospect of data from occupants. 

• X7 (Type of HVAC system): This variable was discretised into four 

classes according to the responses found in the data collecting step. Each 

class corresponds to the predominant type of air-conditioning system in 

the school. Once the purchase of systems in public schools is made in 

large quantities, schools often present the same air-conditioning type. 
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The classification was done according to the features of each school: 

Single unit Split; Single unit Window; Central, None.  

• X8 (Operation time): This variable corresponds to the turns that the 

schools operate. Some schools offer classes during the morning and the 

afternoon (all day), while some schools also offer night shifts (usually for 

young and adult education). The classification was done into those two 

classes. 

 

After the discretisation process, the network was trained using 50% of the 

dataset (213 observations), while 50% remaining was used for validation. This 

percentage was adopted as suggested by good practices in BN development for split 

datasets (CHEN; POLLINO, 2012). The data subset was performed using random 

sampling. The training process was done using Equation 1, and the result of this process 

is the probability of each class for each node. R environment was used to process, 

organise and discretise the data. Netica (from Norsys (2017) was used to build the BN 

and perform the network analysis. 

The output variable is the benchmark result (X0). There are several ways to 

qualify a benchmarking result: good-practices, typical, non-efficient (EPA, 2015); 

classes A to E of efficiency (VELOSO et al., 2020); efficient or non-efficient. For this 

variable, a five-scale was adopted for discretisation purposes, considering the classes of 

the actual performance of the building as: “A” to very good performance, until “E” to 

very poor performance. Since this is the output node, this node assumed the 

probabilities a priori. Since there is no a priori information that allowed us to determine 

which classification each school would have, we assumed the principle of maximum 

entropy, considering the same probability of occurrence for each class. Since we had 

five classes, each class of the output node has a 20% a priori probability. 

It is important to highlight that the output variable is not the numerical 

prediction of energy consumption (kWh) or energy performance (kWh/m².year or 

kWh/student.year). Unlike other types of energy benchmarking methods, which usually 

predict a quantitative difference between the benchmarked building and a given 

benchmark, the result of the method proposed here is a qualitative variable that indicates 

the energy performance considering information from all nodes. In other words, it 

translates the behaviour of an expert person in determining the energy performance of a 
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school, considering aspects of its location, systems, occupation, area and thermal 

satisfaction of users. 

 

2.5. Validating the Bayesian Network 

 

After the network training process, a validation step tested the power of the tool 

in providing reliable results in practice. The validation process consists of submitting 

already-known instances into the network and verifying if the outcome predicted by the 

network was equal to the actual result. This analysis is expressed through a matrix of 

confusion in which the lines are the actual results, and the columns are the predicted 

results. Metrics can be obtained from the matrix of confusion. One of the most 

important metrics is the error rate (Equation 3, according to Koller and Friedman, 

2009). 

 

E = 𝑊/C        (3) 

where: E is the error rate; W is the number of cases wrongly classified by the BN; C is 

the number of cases in the validation dataset. 

 

The lower the error rate, the strongest the capacity of the BN in predicting new 

cases correctly. Another validation metric is the accuracy, which is one minus the error 

rate (1 - E). A similar metric considered is the sensitivity, shown in Equation 4 

(KOLLER, FRIEDMAN, 2009), which analyses the network's capacity to predict a 

correct result, i.e. evaluating if the prediction of a case in one class actually belongs to 

that class. 

S = 𝑃𝑖/𝐶𝑖        (4) 

where: S is the sensitivity; Pi is the number of cases predicted correctly as a class i; Ci is 

the number of cases actually classified as a class i; n is the number of instances of the 

output node. 

 

Finally, since our process is based on a sample from the population, it is 

necessary to amplify the error rate by considering a confidence interval (Equation 5 

according to Montgomery, Douglas and Runger, 2003). 
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IC = E ± z × √𝐸 ×
1−𝐸

𝑛
        (5) 

where: IC is the interval of confidence for the error rate; E is the error rate; z is the 

statistic score of the Gaussian distribution given a level of confidence. In this study, the 

level of confidence is 95%, resulting in a z score equal to 1.96; n is the size of the 

sample. 

 

The interval of confidence expands the error rate into a range. This is a way to 

deal with the sampling error, which is a type of error inherent to the processes that use 

samples. The use of an interval of confidence allows the generalisation of the sample 

results to the population. Thresholds to define the good performance of a BN are not a 

consensus in the literature. In fact, it depends on each case analysed. A good reference 

is that values of sensitivity and accuracy higher than 80% are desirable, and the range of 

an interval of confidence should be less than 10% (CHEN; POLLINO, 2012). 

Finally, actual cases of four schools were tested in the BN to provide examples 

of extreme cases. This analysis shows how the benchmarking process can be conducted 

and how the method presented in this study combines the impact of both energy 

consumption and thermal satisfaction adequately. 

 

3. Results and Discussion 

 

3.1. Discretised Variables 

 

The discretisation process outlined a first overview of the results. Figure 4.3 

shows the result of the discretisation by plotting the ranges of the variables in each one 

of their classes. In addition, the graphs show the average EUI of the schools according 

to their classes. 
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(a) (b) 

  
(c) (d) 

Legend:  

Figure 4.3 – Discretisation and average EUI of (a) Log EUI, (b) Floor-plan area, (c) 

Occupation and (d) Cooling capacity. 

 

It is possible to note that the discretisation process was adequate once the classes 

had similar ranges. Importantly, each range had the same number of observations since 

EDB was employed, which implies that all classes have the same probability of being 

chosen in the BN.  

Figure 4.3.a shows the logarithm of EUI classes and their average EUI (not log). 

Obviously, as the classes go from very low to very high, their average EUI increases. 

Interestingly, this variable provides a partial statistic benchmark, i.e. it shows expected 
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EUIs as references for rating (Very Low to Very High) when other factors are not 

considered. In other words, an EUI less than 18.5 kWh/student.year is a low EUI for 

schools in Brazil (or efficient school), not taking other factors into account. Figure 4.3.b 

shows that in small and super larger schools, the EUI is slightly higher than the 

intermediate school sizes (medium size and large ones). 

Figure 4.3.c shows that the greater the number of students, the lower the EUI. 

Since those variables are connected. In this context, it is possible to infer the existence 

of some residual energy loads. Those residual energy loads probably are due to office 

loads and refrigerators and do not depend on the school's size or the number of students. 

Also, residual loads were evidenced in literature as Basal Energy Consumption 

(GERALDI et al., 2021). Figure 4.3.d shows, as expected, that the EUI increases with 

the increasing of the cooling capacity installed in the school.  

Regarding the qualitative variables, Figure 4.4 shows their classes and the 

average EUI for each variable.   
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(a) (b) 

  
(c) (d) 

Legend: 
 

Figure 4.4 – Frequency of observations and average EUI for the classes of the 

qualitative variables (a) Climate zone, (b) Thermal satisfaction, (c) Type of air-

conditioning, and (d) Operation time. 

 

Figure 4.4.a shows that buildings in warmer climates, such as zones 7 and 8, 

tend to have average EUI (respectively 120.5 and 111.3 kWh/student/year) higher than 

buildings in other climate zones, probably due to the higher usage of air-conditioning.  

Figure 4.4.b shows that the average EUI increases with the increasing of the 

thermal satisfaction of the schools. In fact, most of the schools with high levels of 

thermal satisfaction have higher cooling capacity, indicating that schools need air-

conditioning to provide thermal comfort to the users. Also, this outcome shows the need 

to consider passive strategies for improving thermal performance in school building 

designs in Brazil, as highlighted by previous studies (GERALDI; GHISI, 2020b; 

SARAIVA et al., 2019). Nowadays, thermal performance is poorly considered, and 
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thermal comfort relies on the use of air-conditioning to reduce humidity levels and on 

the use of fans to promote air movement (BUONOCORE et al., 2018). 

Regarding the type of air-conditioning, Figure 4.4.c shows that the most 

common type is split units (47%), and a significant number of buildings (35%) have no 

air-conditioning at all. Surprisingly, Figure 4.4.d shows that buildings that operate 

exclusively during day time presented EUI higher than buildings that also operate at 

night. This happened because schools that operate at night have significantly more 

students – those schools have three shifts of classes, morning, afternoon and night – in 

contrast, schools that operate during the day have classes in mornings and afternoons. 

Therefore, the energy consumption is divided by a greater number of students to 

compose the EUI. Again, this outcome reinforces the inference discussed in Figure 4.3, 

in which schools have a “residual load” (Basal Energy Consumption), probably due to 

office loads or refrigerators that do not depend on the number of students. This is clear 

in Figure 4.4.d because if the main loads were dependent on the number of students or 

the floor-plan area, the EUI should be higher for schools that operate all day and night 

once they have more students. 

Importantly, the results of the discretisation process provide partial benchmarks 

of the building stock. For example, one could assume that the average EUI for a school 

located in Climate Zone 8 is 111.3 kWh/student/year. One could also assume that the 

average EUI for a school that operates during the day and night is around 59.9 

kWh/student.year.  

The average EUI, disregarding all particularities of each school and just taking 

the mean EUI for the 416 schools, was 72 kWh/student per year. For comparison with 

other studies, the average EUI in terms of floor-plan area was 30.54 kWh/m².year. This 

is a low EUI value compared to statistical benchmarks of other countries with similar 

climate conditions, for example, 86 kWh/m².year in Italy, 63 kWh/m².year in Cyprus 

and 123 kWh/m².year in Argentina (PEREIRA et al., 2014). The determination of an 

average EUI considering all aspects together is performed by the Bayesian Network. 

 

3.2. The Bayesian Network 

 

A Bayesian Network is represented by a visual interface where the nodes are 

represented by boxes, the classes of each node have a belief bar to illustrate their 

probabilities (obtained from the training step), and arrows represent relationships 
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between nodes. The numbers above the boxes of the continuous variables represent the 

mean and the interval of confidence of the corresponding variable. Figure 4.5 shows the 

outcome of the BN developed in this study. 

 

 

Figure 4.5 – Bayesian Network interface (obtained from Netica). 

 

The result of the BN is the node BENCHMARK, which is a metric for the 

whole-building evaluation that considers all the input nodes. It is important to state that 

this metric delivers an outcome in terms of probability. This provides a degree of truth 

of the result instead of a single and closed number or class. It means that this method 

leaves the terrain of the deterministic, usually employed in building performance 

assessment, and get in probabilistic. Indeed, the use of statistic approaches are emerging 

to deal with the energy performance of building stocks (BORUNDA et al., 2016). It is 

especially important to employ such approach in cases of buildings with intermediate 

performances, in order to provide a complete diagnosis of the context of that building. 

In practice, a user can consult the BN by setting instances in each node. For 

example, to benchmark a demonstrative school “A”, the user enters with the EUI of the 
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school “A” in the corresponding class of the node “Energy Use Intensity”; the floor-

plan area in the corresponding class of the node “Floor-plan area”, and so on, until the 

output node (BENCHMARK) will calculate the probabilities a posteriori. When a class 

is set with a certain instance, the node will appear green and show “100%” of 

probability for the instance that was set. Visually, the output node adjusts its belief bars 

to represent the probability of this school “A” to fit each class of the node 

BENCHMARK. For example, if an actual school has 2,500 m² of floor-plan area, the 

user will set the “Large size” (between 1,972.42 and 2,941.06) of the node Floor-plan 

area. The equivalence of class in each node was shown in Table 4.2 (unfortunately, the 

interface of Netica supresses long-texts in instances’ descriptions). A practical example 

of the network application is presented as follows. 

 

3.3. Validated Bayesian Network 

 

Validation is an important stage in BN construction. A sample composed of 213 

schools (50% of the dataset) was used to test the BN performance. Such schools were 

not used to train the network, so these cases were unseen by the BN. Table 4.3 shows 

the confusion matrix showing the relationship between predicted and actual results 

during the validation stage. 

 

Table 4.3 – Confusion matrix 

Actual 
Predicted* 

TOTAL Sensitivity 
A B C D E 

A 12 2 5 2 0 21 57% 

B 2 26 6 2 0 36 72% 

C 1 3 32 3 1 40 80% 

D 0 3 6 33 3 45 73% 

E 0 0 4 7 60 71 85% 

TOTAL 15 34 53 47 64 213  

* Highlighted values are corrected predictions. 

 

Table 4.3 shows that the BN had a good performance in general. All sensitivity 

values were greater than 50%, showing an overall good prediction capacity in all 

instances. Specifically, the BN showed a good capacity to predict that a building is in 

the “E” class once it achieved 85% sensitivity. 
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There were 163 cases correctly predicted out of the total 213 cases tested. The 

error rate was 23.47% (Accuracy of 76.53%). By calculating the interval of confidence 

(using Equation 5), the error rate range was 5.69%, which means that the error rate for 

the population ranges from 17.78% to 29.17%, considering a 95% confidence level. 

Importantly, once this is a data-driven method, the results are restricted to this study 

population, which corresponds to the Brazilian public elementary school stock. 

Variables and results might change according to the dataset and application. 

Compared to other studies that addressed machine learning methods for 

benchmarking buildings, Silva et al. (2019) achieved an error rate equal to 18.3% (C-

RMSE) using support vector machines for benchmarking school buildings in São Paulo, 

Brazil. Targeting the same purpose but for office buildings, Dongmei et al. (2018) 

achieved accuracies from 85% to 71% using a regression model. 

BN was used for other purposes related to building performance analysis in the 

literature but never for benchmarking energy performance. So, one could compare the 

BN performance for other purposes. For example, to estimate the occupation in office 

and residential buildings, Amayri et al. (2019) achieved an average accuracy of 84% of 

the BN. Barthelmes et al. (2017) used BN to predict window operation actions and 

achieved accuracy from 93% to 98%. 

Therefore, it is possible to understand that the BN developed herein achieved a 

good performance compared to other studies and good practise thresholds. The structure 

can be generalised for other regions as long as the data used to train the BN is adapted 

using local evidence-based data. 

 

3.4. Practical application example 

 

In this section we present a practical application of the benchmarking process in 

four actual situations, and explain how the method presented in this study impacts the 

final evaluation of real schools. 

Firstly, two similar schools with low EUIs (Class “A” in LOG EUI node) and 

different thermal satisfaction levels were tested, one with “Very High” thermal 

satisfaction and other with “Very Low”. Figure 4.6 shows an example of this scenario.  
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(a) 

 

(b) 

Figure 4.6 – Example of application of the Bayesian Network where: (a) is a school 

with very low EUI and very high thermal satisfaction; and (b) is a school with very low 

EUI and very low thermal satisfaction. 
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Figure 4.6.a shows an example of a building with very low EUI and associated 

with a very high thermal satisfaction level, which results in an 84.9% probability of this 

school obtaining a performance rated as “A”, as observed in the benchmark node. This 

means that this building is using energy efficiently to provide adequate thermal 

conditions to occupants, positively affecting their satisfaction. Otherwise, Figure 4.6.b 

shows the similar instances for a second building with very low EUI but associated with 

a very low thermal satisfaction level, showing that this building obtained a performance 

rated as “B” (66.1% probability) in the benchmark node. This means that this building 

is not really an energy-efficient one; its energy consumption is low but the rooms 

provide unpleasant thermal satisfaction, so it probably needs air-conditioning to provide 

adequate thermal conditions to occupants. 

Although the second building still received a good performance rate, it is 

possible to note that thermal satisfaction is considered in the benchmark result (the 

benchmark is not “A”, it is only “B”). Nonetheless, the thermal performance is not the 

only factor that defines the benchmark result, neither solely the EUI. It is noteworthy 

that this building still presented a very low EUI compared to the whole stock and must 

be somehow efficient in other aspects (for example, lighting systems) compared to 

others. 

A second example of two similar schools with very high EUI and different 

thermal satisfaction levels were tested (one with “Very High” thermal satisfaction and 

other with “Very Low”) is presented in Figure 4.7. 
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(a) 

 

(b) 

Figure 4.7 – Example of application of the Bayesian Network where: (a) is a school 

with very high EUI and very low thermal satisfaction and (b) is a school with high EUI 

and very high thermal satisfaction. 
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It is possible to see that Figure 4.7.a shows a school with very low performance 

(it consumes lots of energy and provides unpleasant thermal conditions). The 

benchmark result was a high probability (99.6%) for a “E” performance in the 

benchmark node. However, a similar building, with a similar energy consumption, 

associated with a very high thermal satisfaction level, and it was benchmarked as “D” 

performance (72.3% probability). This means that this second building may be using 

energy to provide adequate thermal satisfaction for occupants – but since its energy 

consumption is high, there must be some inefficient systems that could be improved. 

The important result is: the second building benchmark is not “E”, it is “D”. 

The advantage of this method is the integration of different subjective aspects in 

rating building performance by using machine learning. This would be impossible by 

using traditional benchmarking methods that use entire numeric operations, such as 

regressions or frontier analysis. A regression benchmarking is applicable when 

buildings in the stock overall share similar environmental satisfaction levels. However, 

in developing countries, such as Brazil, energy regulations are still in a developing 

phase. The existing building stock is already constructed with low energy and thermal 

performance. Thus, an effective and disruptive method to evaluate those buildings is 

necessary. In fact, as shown by Elnaklah et al. (2021b), IEQ must be considered in the 

evaluations of energy performance of buildings in order to promote sustainability. 

Bottom-up methods are comprehensive and refined once they use a 

representation of physical phenomena. However, as identified by previous studies 

(VELOSO et al., 2020), there is a gap between reality and what could be modelled on a 

large scale due to the autonomy of buildings with a mixed-mode operation. This gap 

implies variability and, thus, the use of a bottom-up approach individually might not be 

effective (HONG et al., 2014). The proposition of using a top-down approach tried to 

fill this gap by combining subjective aspects (such as thermal satisfaction), physical 

characteristics (such as the floor-plan area), and occupation aspects (such as the number 

of occupants). Many techniques and methods are emerging to make the building 

performance analysis increasingly integrative. For example, modelling the urban 

context (REINHART; CEREZO DAVILA, 2016) to include interactions of the building 

with its surroundings. Thus, in this study, we explored an approach to consider 

satisfaction levels in rating energy building performance and other systems and building 

factors.  
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As stated before, the issue identified in this study can be considered as an energy 

poverty problem. A future concern is the possible uprising of a counter-efficiency 

effect: while buildings receive air-conditioning systems to improve thermal satisfaction, 

their EUI will increase, implying in an increasing of the greenhouse gas emissions from 

the building stock. Therefore, two further steps for the subsequent studies can be 

outlined: (a) estimating the impact of this counter-efficiency effect by estimating how 

much the EUI of the building stock will increase according to scenarios of interventions 

(e.g., what happens if half of the buildings with no air-conditioning receive air-

conditioning, and so on) and; (b) proposing energy-efficient strategies in those 

interventions by prioritising passive cooling strategies or integrating photovoltaic 

systems to reduce net energy amount. These propositions for further works culminate in 

integrating a bottom-up approach in the method proposed herein. Including simulation 

tools and using archetypes results in a promising method to predict future scenarios 

(MATA; SASIC KALAGASIDIS; JOHNSSON, 2014), especially considering the 

International Panel for Climate Change (IPCC) scenarios to consider climate change 

effects.  

 

4. Conclusions 

 

This paper presented a new data-driven method to integrate occupant-reported 

thermal satisfaction in the energy benchmarking of buildings. The main processes were 

the statistical analysis of variables in relation to the EUI of each school, the 

discretisation of each variable and the development of a machine learning tool for 

classifying the overall building performance. An approach of an expert system through 

Bayesian Network (BN) was employed. Training and validation stages were carried out. 

The main conclusions can be outlined as follows: 

- The BN presented an adequate performance (94.76% accuracy) in 

comparison to other machine learning techniques used for benchmarking 

and other BN for other purposes. 

- Using the BN to test similar buildings with discrepant thermal 

satisfaction reported by users proved to result in different benchmarking 

result – i.e. schools associated with higher levels of thermal satisfaction 

reported by users were scored with better performance grade. This 

outcome demonstrated that the method indeed considered the thermal 
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satisfaction for the benchmarking of the whole building performance. In 

summary, the thermal satisfaction was considered alongside with other 

aspects to compose a final result. The final result is sensitive to all input 

variables, and none of them alone performed a decisive part. 

- The BN provides a result in terms of probabilities to fit in a class of 

efficiency. This is helpful because it did not provide a closed and blind 

result – instead, it provides a degree of truth for the evaluation, offering 

autonomy to stakeholders for understanding the result.  

- Using evidence-based machine learning to develop an energy 

benchmarking method for buildings could lead to good results by 

combining variables to provide a fair comparison among buildings by 

integrating the EUI, building features, and subjective aspects such as 

occupants’ thermal satisfaction. 

- A key limitation is that this tool is highly dependent on the dataset. We 

used a dataset of 2018, but as the building stock changes, the BN results 

might change. Then, continuous collection of data and updating of the 

BN are needed. 

 

The study presented herein shed light on the discussion of benchmarking 

methods to include the evidence-based subjective performance of buildings in their 

overall evaluation. Therefore, it was possible to conclude that the data-driven approach 

used in this study was adequate to perform a whole-building assessment especially in 

developing countries. 
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5. Bottom-up building stock model 

 

This Chapter is the transcription of the following paper: 

 

Data-driven framework towards realistic bottom-up energy benchmarking 

using an Artificial Neural Network: application for Brazilian schools 

Authored by Matheus Soares Geraldi and Enedir Ghisi. 

Submitted to Energy and Buildings (ISSN: 0378-7788), in July 2021. Under 

Review 

 

Abstract: 

Energy benchmarking of buildings has an important role in improving energy 

performance by establishing a reference for the energy efficiency of the building stock. 

The simulation of archetypes followed by a generalisation model has been widely used 

to obtain benchmarks. However, even though archetypes summarise the building 

stock’s main features, the uncertainties of the building stock must be accounted for in 

the modelling process. Moreover, testing the response of the benchmarking model using 

the actual building stock data supports the reliability of the method. This paper aims to 

propose an innovative framework to reduce the uncertainty of archetypes for 

benchmarking buildings. A standard framework for data compiling is proposed and an 

assessment of the uncertainty of variables using entropy and cluster analysis defined 

representative archetypes. An Artificial Neural Networks (ANN) was used as a 

benchmarking tool, and it was applied to benchmark a sample of actual buildings. Also, 

the simulation outcomes were used to determine energy end-uses according to the 

climatic zones. The framework proposition is presented alongside with a practical 

application. The result is an unprecedented benchmarking method for the Brazilian 

school building stock. Additionally, the modelling process showed to be robust for 

combining different datasets, and the ANN achieved high-performance metrics. 

Conclusion indicates the potential of using the framework for other typologies. 

Moreover, the benchmarking of the sample of buildings showed a tendency to the 

inefficiency of the building stock while a specific case study was explored, showing the 

potential of the method to find faults in the building energy use. 
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1. Introduction 

 

Buildings are complex systems, and their energy performance during the 

operational phase has been evaluated through energy benchmarking. Energy 

benchmarking of buildings is a helpful practice that compares a single building 

performance to others with the same typology in the building stock (WILDE, 2018). 

Energy benchmarking helps to understand energy use in practice and provides 

opportunities to explore aspects that affect energy use. Moreover, there is evidence in 

the literature that energy benchmarking improves energy efficiency by promoting 

competition among buildings’ stakeholders (CHUNG, 2011) and raising awareness 

about the efficiency of their systems (VAISI; PILLA; MCCORMACK, 2018). The 

building energy performance of a given building is evaluated through the comparison 

with a benchmark – a yardstick that represents the energy performance of a building 

under typical conditions. The benchmark needs to be determined through an adequate 

method to assure reliability. 

Studies that evaluated methods to determine the benchmark are gaining ground. 

Li et al. (2014) classified benchmarking methods considering their complexity level 

(white, grey, or black-box approaches). Borgstein and Lamberts (2016) summarised the 

algorithms employed, the variables involved, and the accuracy level of several methods. 

Chung (2011) presented a complete review of methods for benchmarking, condensing 

the methods in the following topics:  

• Simple normalisation: the benchmark is considered as statistical measures (e.g., 

mean or median). Further statistical analysis can be done, such as the 

determination of quantiles and histograms (BOEMI et al., 2011; LI, 2008; 

SCOFIELD, 2013; SCOFIELD; DOANE, 2018; TAYLOR et al., 2018); 

• Regression analysis (or Ordinary Least Square, OLS): the benchmark is 

calculated through an equation considering a cause-effect function of the energy 

performance and relevant characteristics (BORGSTEIN; LAMBERTS; 

HENSEN, 2016; HONG et al., 2014; PAPADOPOULOS; KONTOKOSTA, 

2019; SABAPATHY et al., 2010). 

• Stochastic Frontier Analysis (SFA): the benchmark is also calculated through a 

regression equation considering the determination of a geometric element using 

data of high-performance buildings (BUCK; YOUNG, 2007; YANG; ROTH; 

JAIN, 2018). 
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• Data Envelopment Analysis (DEA): the benchmark is calculated through a 

regression analysis considering a boundary that includes all datasets (CHUNG, 

2011; LEE, 2009a). 

• Advanced methods: methods that take advantage of computational intelligence, 

for instance, geostatistical approaches (KOO; HONG, 2015; ÖSTERBRING et 

al., 2018) and machine learning (CHUNG; YEUNG, 2017; PARK et al., 2016; 

RUZZELLI et al., 2010; SEYEDZADEH et al., 2018). 

 

The benchmark is obtained through an operation performed using a dataset of 

building energy performances in all methods. This dataset must adequately represent the 

building stock, i.e. it has to incorporate variations of energy performance due to the 

different characteristics of the buildings in the real world. The building stock is 

compared to a population and the buildings to individuals in an energy epidemiology 

approach (HAMILTON et al., 2013). Benchmarks are calculated for each building 

typology – which implies that same-typology buildings share similar characteristics –, 

and the climatic conditions play an important role in energy performance variation 

(GOLDSTEIN; ELEY, 2014). Then, actual data can be used for benchmarking of 

building under the same climatic conditions (VELOSO et al., 2020), but otherwise, a 

modelling process is necessary (BORGSTEIN; LAMBERTS, 2014). Thus, this dataset 

can be composed of actual data – obtained through Display Energy Certificates (DECs) 

(HAMILTON et al., 2017; HAMILTON et al., 2014); or simulated data – obtained 

through the building performance simulation (BPS) of archetypes (HERNANDEZ; 

BURKE; LEWIS, 2008; NÄGELI et al., 2018). Although the literature supports that 

data-driven benchmarking approaches are more reliable (ROTH et al., 2020), these 

methods rely on open data policies. Hence, the countries or cities that do not have DEC 

policies must adopt archetype-based benchmarking methods.  

Archetypes – also called reference buildings – summarise the building stock into 

representative BPS models (MATA; SASIC KALAGASIDIS; JOHNSSON, 2014; 

REINHART; CEREZO DAVILA, 2016). The literature outlines methods to obtain 

archetypes, and, in summary, they can be obtained through clustering methods by 

grouping a sample of buildings into a single model (COTTAFAVA et al., 2018; 

SCHAEFER; GHISI, 2016). The archetype can be simulated by considering the 

characteristics found in the actual stock to represent typical conditions. Generally, 

average or median parameters for each BPS model are used. A manipulable model is 
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helpful to obtain representative energy end-uses (BORGSTEIN; LAMBERTS, 2014), to 

prospect improvements due to innovative solutions in scale (STREICHER et al., 2018), 

and to evaluate scenarios, for example, considering the effects of climate change 

(HAMILTON et al., 2016; INVIDIATA; GHISI, 2016). Therefore, the archetypes can 

be used to develop a tailored benchmarking using correction factors (e.g., weather, 

occupancy, systems) as strategies to adjust benchmarks to specific conditions, using 

methods described above (OLS, SFA, DEA, or machine learning techniques (TSO; 

YAU, 2007)). Inaccuracies of benchmarking approaches were studied in the literature, 

evidencing errors due to the static nature of the benchmarks (HEESEN; MADLENER, 

2018). The weak spot of using archetypes is that this method carries uncertainties in its 

formulation. Since broad information has to be condensed into narrow models, 

uncertainties might lead to significant errors. However, the literature supports those 

methods to minimise the uncertainty can enhance archetypes' representativeness 

(ZHURAVCHAK et al., 2021). The reliability of the benchmarking method can be 

verified by means of testing the response of the actual building stock performance. 

Thus, the response of the building stock to a benchmarking process can bring 

evidence towards the energy efficiency of buildings. Some studies explored the data-

driven benchmarking policy outcomes. Hsu (2014) analysed a dataset of energy audits 

in New York City and highlighted those operational improvements might bring better 

results than upgrading systems. In China, an evidence-based benchmarking using a 

sample of 165 office buildings was developed (WEI et al., 2018); it showed the 

enormous range of building performances in Beijing. Other examples can be found, 

such as identifying retrofit improvements (BURMAN; KIMPIAN; MUMOVIC, 2018; 

ZINZI et al., 2016), assessing low performance (KOLOKOTSA et al., 2018; LIZANA 

et al., 2018), and characterising and modelling the building stock (BURMAN; 

KIMPIAN; MUMOVIC, 2018; MARRONE; GORI, 2018; WILLIS et al., 2011).  

Along these lines, on the one hand, there is the use of archetypes as a path to 

model the building stock through representative simulation models. On the other hand, 

there is the comprehensive study of the building stock in terms of statistical analysis. 

Therefore, given the statistical nature of the archetype composition, it always holds 

uncertainties within – so, how can one be sure that the selected parameters are 

representative of the building stock archetype? 

Consequently, a knowledge gap exists between the current methods for 

developing archetypes and the obtention of data from building stock, by evaluating the 
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information embodied in the dataset used to compose the archetypes. The uncertainties 

of the archetypes were pointed out as a major problem that jeopardizes the wide 

application of benchmarking and limits regional applications such as UBEM (Urban 

Building Energy Modelling) simulations (ALI et al., 2019). 

To mitigate this gap, this paper proposes a framework to model a building stock 

archetype using information theory and cluster analysis to select the variables in the 

simulation. The solution proposed is based on increasing the number of cases of a 

parameter to reduce its uncertainty by including variability in the stock model. In other 

words, the higher the variability of a given parameter in the stock, the higher its 

variability should be in the simulations. The novelty of this study relies on the 

proposition of a schematic data-driven method to reduce uncertainty in modelling 

archetypes for energy benchmarking of buildings. The method can be adapted for other 

regions and building stock clippings, especially for developing countries, since building 

stock information is hardly available.  

This paper outlined the first integration of the Information Theory and machine 

learning models in the context of building stock modelling. Related studies have worked 

towards the updates in the accuracy of models for benchmarking, but this paper outlined 

the first use of Entropy analysis and the proposition of a manipulable stock model 

towards interpretability and applicability of models. Finally, the proposed framework 

was demonstrated and compared with an actual building performance sample and a 

comprehensive benchmarking applicability was explored. 

Thus, the objective of this article is to propose a reducing-uncertainty framework 

to obtain a bottom-up energy benchmarking model using Artificial Neural Networks 

(ANN). A test-bed data of the school buildings in Brazil is used to demonstrate the 

framework function. Applying the energy benchmarking method in an actual building 

stock demonstrates the assessment of its energy efficiency in a stock-level approach. 

The framework employs Information Theory to identify the variables with more 

uncertainty in the model, reducing the uncertainty of the BPS model by including more 

evidence data into the parametric simulation process. Cluster analysis was used to select 

the variables. After the archetypes were built and simulated, an ANN was constructed to 

generalise the model, and the actual building stock was benchmarked. Energy end-uses 

were aimed to be identified to allow the breakdown of the energy usage of the 

benchmark. Finally, a specific building was analysed as a case study to show the 

potential application of the method. 
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2. Method 

 

The method is composed of seven steps. A test-bed dataset from school 

buildings in Brazil was used to demonstrate the method. The first step is the definition 

of the targeting building stock. Then, a standard inventory structure is proposed to 

compile the building stock features and assign variables and their values. From this 

inventory, the entropy analysis aids the decision of which parameters should be varied 

and which should be fixed in the simulation model. A cluster analysis was employed for 

those variable parameters to set their values, while the median value was selected for 

the fixed parameters. Then, a set of cases was performed through parametric simulation 

using EnergyPlus. Next, the results were used to develop an artificial neural network 

(ANN) to serve as the benchmarking model. Finally, the actual building stock 

performance could be benchmarked to measure its energy efficiency and validate the 

stock modelling framework. The energy end-uses can be obtained for each one of the 

eight climate zones analysed. A single case study is analysed particularly. Figure 5.1 

shows the method workflow. 

 

 

 

Figure 5.1 – Flowchart of the method. 
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2.1. Defining the target building stock 

 

The target building stock is the group of buildings that is aimed to be modelled. 

The definition of the building stock is important to assure the validity of the archetype. 

A target building stock can be defined through the following boundary conditions: 

i. The buildings are consistent: buildings share similar social function for 

the occupants (for example, schools, hospitals, office activities, and so 

on); 

ii. The buildings have similar monthly operations throughout the year. This 

condition is related to the social function, and since the function is 

similar, it is likely that the operation is also similar; 

iii. There is a comprehensive dataset of a representative sample of buildings 

to represent the building stock. 

 

Then, from the target building stock, datasets of the stock are needed to extract 

information to model the archetypes. In order to apply the framework proposed, a test-

bed dataset to represent the public-school building stock in Brazil was employed. This 

dataset was presented and explored through a comprehensive analysis in our previous 

work (GERALDI; GHISI, 2020b). This dataset is representative for the targeting 

building stock, and it is composed of: 

i. Electricity bills: obtained through a survey in several cities in Brazil. 

Data of 417 schools in all of the eight climatic zones were obtained for 

the year 2018. 

ii. Survey analysis: to enrich the information of the electricity bills, a survey 

was conducted with the occupants in the same 417 schools. A 

questionnaire aimed to fully describe building features and occupants’ 

patterns in all schools. 

iii. Design analysis: Drawings of 31 schools were carefully analysed in three 

climatic zones. 

iv. Energy audits: Three energy audits in schools in Florianópolis (southern 

Brazil) were carried out. Site inspections helped to gather data of actual 

buildings. Guidelines of ISO 50002/2016 and ASHRAE Energy Audit 

level 2 (Energy survey) were followed. Results supported the massing 

model creation and validation of the surveyed values. 
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Then, a multi-level information dataset of the targeting building stock was 

accomplished. The quality of the data is inversely proportional to the effort of gathering 

it. Energy audits display high detail information while survey analysis and energy bills 

have little information. However, it is easier to gather data on more buildings through 

survey analysis than through energy audits. Design analysis provided relevant 

information regarding building spaces, constructions, and materials. It is essential to 

encompass all information available in the stock modelling process in light of this 

reality. The framework proposed herein relies on the datasets’ compilation into a 

standard structure that converges into an archetype for simulation in EnergyPlus. Then, 

this method is robust to combine different sources of information to model the 

archetypes. It is important to mention that only electricity was assessed since fuel 

sources are usually related to heating water or cooking in Brazil. 

 

2.2. Arranging the inventory 

 

Outlying pieces of evidence from actual features of the building stock are 

essential to guarantee the archetype's accuracy. To construct a representative building 

stock model, the archetype must contain parametrisations to mirror the actual building 

stock variability. If the dataset contains information for every building in the stock, just 

choosing the exact parameters combination of each building would result in the 

simulation of each building of the stock. However, the dataset rarely contains every 

building of the stock. Thus, we need to obtain a relevant set of values from a stock 

sample that reflects the actual conditions to be represented through simulation. The 

results of the simulation are used in an extrapolation method (the benchmarking model). 

Thus, other buildings that are not in the building dataset (but fit in the building stock 

boundary conditions) can benefit from the benchmarking model. 

The framework for gathering such building stock relevant features is proposed at 

the subspaces level. Subspaces are groups of similar spaces that the buildings of the 

stock share. The subspaces definition is helpful to aid the energy modelling process, for 

example, to set schedules of operation and internal loads. 

For every building in the datasets, it is important to arrange their information 

into an inventory, considering a standard sequence of fields that should be filled. The 
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characterisation of the building stock (filling the inventory) is performed in two stages: 

(a) descriptive characteristics; and (b) specification of features. 

Descriptive characteristics are qualitative explanations regarding the building 

configuration (subspaces identification) and operation (schedules), where the buildings 

are placed (weather), how the buildings are shaped (massing model), what types of 

Heating, Ventilation, and Air-Conditioning (HVAC) are often used (HVAC system(s)). 

Each building will have a single response for every descriptive aspect; however, the 

final analysis is a subjective evaluation of those aspects that summarises the building 

stock’s subjective features. Table 5.1 summarises the descriptive analysis and presented 

how it is included in the simulation model. Examples are provided for Brazilian school 

building stock. 

 

Table 5.1 – Summary of descriptive characteristics of the building stock  

Parameter 
Application 

(E+ object) 
Description Example for schools in Brazil Source 

Identification 

of the 

subspaces 

Thermal 

Zones 

Identification of the 

similar spaces that the 

buildings share. 

Schools have seven subspaces: 

Classrooms, library, computer 

cluster, office rooms, cafeteria, 

bathrooms, and aisles. 

- Design 

analysis, 

- Energy 

audits 

Shape rules 

Geometry and 

Building 

Surface 

Recognition of the shape 

rules that describe the 

building massing 

composition, i.e. the 

distribution of the internal 

spaces and storeys. 

Classrooms are placed together 

and accessed through an aisle. 

Bathrooms, cafeteria, and kitchen 

are next to each other. Office 

rooms, library, and computer 

cluster are typically placed 

together. Seven predominant 

building shapes were identified: 

Shape E, L, H, O, U, 

Rectangular, and Multiple 

Buildings. 

- Design 

analysis, 

- Energy 

audits 

Weather Weather file 

Identification of the 

standard weather 

conditions where the 

target building stock is 

inserted. 

Schools are uniformly distributed 

in all eight Brazilian climatic 

zones. Thus, it is important to 

include all climatic zones in the 

parametric simulation. 

-

Electricity 

bills, 

- Survey 

HVAC type 

(for each 

subspace) 

HVAC 

template 

Identification of the 

predominant types of air-

conditioning for each 

subspace in the building. 

All schools in the dataset have 

air-conditioning in office rooms, 

computer cluster, and library. 

Half of them have it also in 

classrooms. All HVAC systems 

are unitary (split type or window 

type). 

- Design 

analysis, 

- Energy 

audits,  

- Survey 

HVAC 

operation 

Energy 

Management 

System 

Definition of the HVAC 

system pattern for each 

subspace. 

All school buildings have a 

mixed-mode operation. 

- Design 

analysis,  

- Energy 

audits,  

- Survey, 
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Table 5.1 – Summary of descriptive characteristics of the building stock (continuation). 

Parameter 
Application 

(E+ object) 
Description Example for schools in Brazil Source 

Water heater 

system 

Water heater 

system 

Register of the 

proportions of the systems 

to heat water and the hot 

water end-uses. 

15% of the schools have electric 

showers, 85% have no water 

heating systems. Solar, gas heater 

or heat pumps were not found. 

- Design 

analysis,  

- Energy 

audits,  

- Survey, 

Hot water 

usage 

Schedules: 

Compact 

Identification of the daily 

hot water usage pattern. 

Schools often do not use hot 

water. The electric showers are a 

precaution to solve accidents 

with children. 

- Energy 

audits,  

- Survey 

Annual 

operation  

(for each 

subspace) 

Schedules: 

Compact 

Documentation of the 

building operation 

throughout the year for 

each subspace in the 

building. 

Schools operate every weekday, 

from 8:00am to 12:00am and 

from 1:00pm to 6:00pm. 

- 

Electricity 

bills, 

- Survey 

Daily operation 

(for each 

subspace) 

Schedules: 

Compact 

Documentation of the 

daily building operation 

pattern for each subspace 

in the building. 

Schools operate every weekday, 

from 8:00am to 12:00am and 

from 1:00pm to 6:00pm. 

- 

Electricity 

bills, 

- Survey 

 

Based on the information shown in Table 5.1, it is possible to create the core 

concept of the building archetype: layout of the rooms, daily and annual operation 

patterns and climate. The HVAC system should be modelled according to the 

predominant type of systems found in the building stock. The scenarios for the 

descriptive parameters are employed considering the primary outcomes from Table 5.1. 

Since those are subjective parameters, accounting for the frequencies of occurrence 

provides a good path to select the scenarios. For example, if more than one 

representative HVAC system is found in the targeting building stock, “n” scenarios of 

HVAC system should be modelled where “n” is the number of representative HVAC 

systems. The definition of the representative system is still subjective since those 

parameters are subjective characteristics. 

For the building stock analysed, seven subspaces were identified: 

• Subspace 1: Classrooms; 

• Subspace 2: Library; 

• Subspace 3: Computer lab; 

• Subspace 4: Office rooms; 

• Subspace 5: Aisles, cafeteria, and open spaces; 

• Subspace 6: Bathrooms; 

• Subspace 7: Kitchen. 
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The specification of features is used to arrange the specific parameters of the 

simulation model. It includes all parameters relevant for a generic building energy 

simulation, such as the size of the subspaces, thermal properties, and lighting loads. 

Once several values are registered for each parameter, each parameter becomes a 

continuous variable. Then, a variable identification number was assigned for each one. 

One emphasises that this framework proposition is a table that should be filled with 

building stock information for every building in the dataset.  

Table 5.2 presents the variables considered in the specification of features to 

model the archetype and how they are interpreted in the simulation model in 

EnergyPlus.
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Table 5.2 – Specification of features structure. 

Aspect Group Description 
Application  

(E+ object) 
Unit Source 

Variable 

ID 

Building size 
Subspace area Subspace 1, 2, ..., S BuildingSurface: Detailed m² Design Analysis X1 

Floor height Subspace 1, 2, ..., S BuildingSurface: Detailed m Design Analysis X2 

Envelope 

Exterior wall 

Thermal transmittance Material and Construction W/m²K Energy Audit X3 

Thermal capacity Material and Construction J/m²K Energy Audit X4 

Thermal absorptance Material and Construction m Design Analysis X5 

Thickness Material and Construction % Energy Audit X6 

Interior wall 

Thermal transmittance Material and Construction W/m²K Energy Audit X7 

Thermal capacity Material and Construction J/m²K Energy Audit X8 

Thermal absorptance Material and Construction m Design Analysis X9 

Thickness Material and Construction % Energy Audit X10 

Roofing 

Thermal transmittance Material and Construction W/m²K Energy Audit X11 

Thermal capacity Material and Construction J/m²K Energy Audit X12 

Thermal absorptance Material and Construction m Design Analysis X13 

Thickness Material and Construction % Energy Audit X14 

Glazing 

Thermal transmittance Material: AirGap W/m²K Energy Audit X15 

Solar Heat Gain Coefficient (SHGC) WindowMaterial % Energy Audit X16 

Opening Factor AirflowNetwork:MultiZone: Surface % Energy Audit X17 

Infiltration rate 
Airflow rate through windows AirflowNetwork kg/m.s Energy Audit X18 

Airflow rate through doors AirflowNetwork kg/m.s Energy Audit X19 

WWR Subspace 1, 2, ..., S FenestrationSurface:Detailed % Design Analysis X20 

Horizontal shading Subspace 1, 2, ..., S Shading:Building: Detailed m² Design Analysis X21 

Vertical shading Subspace 1, 2, ..., S Shading:Building:Detailed m² Design Analysis X22 

Systems 

Equipment loads Subspace 1, 2, ..., S ElectricEquipment W/m² Design Analysis X23 

Lighting loads Subspace 1, 2, ..., S Lights W/m² Design Analysis X24 

HVAC load Subspace 1, 2, ..., S HVACTemplate: Unitary BTU/h Energy Audit X25 

Water heater Heater Thermal efficiency Water heater and Thermal Storage W/W Energy Audit X26 

Occupancy Density of people Subspace 1, 2, ..., S People people/m² Database X27 

EUI -  Whole building EUI - kWh/m².year Database Y 
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Table 5.2 provides the set of values found in the dataset for each variable of the 

framework considered in the simulation model. The set of values can be interpreted 

considering their range (minimum and maximum values) and their distribution 

(frequencies according to bins – a class interval). For example, by analysing the dataset 

of the school building stock in Brazil, the variable X2 (floor height) varied from 2.8 m 

to 3.2 m, and the median value was 3.0 m. 

Table 5.1 provided general guidelines for the energy building model and its 

scenarios with the completion of the inventory, and Table 5.2 provided a distribution of 

values for the set of variables. 

Hence, to prepare the energy simulation model, the variables in Table 5.2 have 

to be assigned with discrete values to parametrise representative conditions of the 

building stock. Running an energy simulation is often a time-and-resources consuming 

process; then, it is important to select typical cases for each parameter in the model. The 

building stock often presents a wide range of values in a variable; then, more than one 

value for some parameters should be set in the simulation to represent the stock 

adequately. 

Therefore, in terms of specification of features, one may ask: how to select the 

parameters that should be varied in the parametric simulation? This can be performed 

by integrating Information Theory and analysing the entropy of each variable. 

 

2.3. Entropy analysis 

 

Claude E. Shannon originally proposed the information theory in 1948, and it is 

a concept that translates the study of uncertainty, quantification, and communication of 

information. Shannon proposed entropy, which quantifies the uncertainty (or 

information) involved in the random variable distribution. There are several 

interpretations for the entropy, including the “degree of surprise” or the “number of 

questions” it is needed to be asked to find a given answer (COVER; THOMAS, 2006). 

For a given continuous variable, the entropy is calculated through Equation 1 (here, we 

adopted Shannon Entropy (COVER; THOMAS, 2006), with the logarithm in base 2). 

 

𝐻(𝑋) =  − ∑ 𝑝(𝑥) × 𝑙𝑜𝑔2𝑝(𝑥)𝑖=1
𝑥     (1) 
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Where H(x) is the entropy of a continuous variable “x” (bits), and p(x) is the probability 

of the variable “x” (%). 

 

In this paper, we employ entropy as a metric of uncertainty. The higher the 

entropy, the higher the uncertainty that a variable holds. The maximum entropy 

corresponds to the lower information available for a given variable. It is reasonable to 

associate the maximum entropy of a variable with the uniform distribution – the 

probability of a variable to be any value is equal for all bins. Maximum entropy only 

depends on the number of bins and can be obtained through the simple logarithm of the 

number of bins (DARSCHEID; GUTHKE; EHRET, 2018). Then, relative entropy is a 

valuable metric obtained by comparing the entropy of a given variable discretised by a 

given number of bins with the maximum entropy for the same number of bins. Relative 

entropy is calculated using Equation 2 (THIESEN; DARSCHEID; EHRET, 2018). 

 

𝑅(𝑥) =
𝐻𝑛(𝑥)

𝐻𝑚,𝑛(𝑥)
× 100     (2) 

 

Where R(x) is the relative entropy (%), H(x) is the entropy of the variable “x” for “n” 

bins (bits), and Hm,n is the maximum entropy of a distribution with “n” bins (bits). 

 

To allow comparison between entropies, the entropy of each variable must be 

calculated using the same number of bins. The number of bins is a definition made by 

the specialist in the information analysis, depending on the number of observations and 

the variable distribution aspect. In this work, we adopted eight bins to discretise all 

variables. This results in the maximum entropy of 3 (logarithm of 8 bins in the base 2), 

as suggested by other studies (DARSCHEID; GUTHKE; EHRET, 2018). We employed 

the R package “Entropy” (HAUSSER; STRIMMER, 2009) to perform all entropy 

calculations. 

All variables were normalised before calculating the entropy using Equation 3. 

 

𝑥′𝑚𝑖𝑛 =
𝑥𝑖−𝑥𝑚𝑖𝑛

(𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛)
       (3) 

 

Where x’ is a given “i" value of the variable “x”, xmin is the minimum value of the 

variable “x” and xmax is the maximum value of the variable “x”. 
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Then, the variable is presented in a range from zero to one. By calculating the 

relative entropy of all variables in Table 5.2 and considering the same number of bins 

and the normalisation, all entropies can be compared using the relative entropy. Relative 

entropy can rank the parameters with high and low uncertainty. In this case, parameters 

with relative entropy higher than 50% were considered with high uncertainty, while 

parameters with relative entropy lower than 50% were considered with low uncertainty. 

Then, parameters with low uncertainty were kept fixed, and no parametrisation 

was performed (since we are more confident about their values in the building stock). 

Otherwise, parameters with high uncertainty were selected to be variable parameters in 

the simulation through parametrisation. Fixed parameters were adopted as their median 

values, but how to select the values for parametrisation? Cluster analysis was employed 

for such purpose. 

 

2.4. Cluster analysis 

 

The previous step provided the variables with more uncertainty in the dataset. 

Thus, a cluster analysis was employed in two steps: defining the optimal number of 

clusters and the parameters’ values for each scenario. Cluster analysis is a multivariate 

technique that aims to group cases of a variable in the same class (cluster), considering 

similarities and dissimilarities (GENTLE; KAUFMAN; ROUSSEUW, 1991). 

Hierarchical and non-hierarchical approaches can be used. In this work, we employed a 

non-hierarchical process using the k-means method. K-means has been used in other 

studies to obtain reference buildings (SCHAEFER; GHISI, 2016; ZHAN et al., 2020a). 

Since k-means needs the number of clusters as input, the optimal number of 

clusters was calculated through the average silhouette method. The average silhouette 

method calculates scenarios of the silhouette coefficient (Equation 4 (GENTLE; 

KAUFMAN; ROUSSEUW, 1991)). 

 

𝑆𝐶 =
𝑥−𝑦

max(𝑥−𝑦)
      (4) 

 

Where SC is the silhouette coefficient, x is the mean distance to the instances to the 

next closest cluster; and y is the mean intra-cluster distance. SC varies from zero to one. 
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The silhouette coefficient determines the fit of an object within its cluster. By 

taking the average silhouette of all objects in a cluster, it is possible to calculate the 

average silhouette width. The optimal number of clusters is defined as the one with the 

highest silhouette width (best objects fit in the clusters). Figure 5.2 shows an example of 

the result of the silhouette method for the variable X27.  

 

 

Figure 5.2 – Example of an optimal number of clusters (Silhouette method) for the 

variable X27 (density of people). 

 

This process is performed for each variable considered for parametrisation (high 

uncertainty). R package Nbclust was used for such assessment (CHARRAD et al., 

2014). Then, having defined the optimal number of clusters, the cluster analysis for 

each variable parameter was obtained through the k-means method. K-means has been 

widely explored in data science, and various descriptions and variations are found in the 

literature. The main purpose consists of grouping the observations in clusters so that the 

variation within the cluster is minimal and the variation between clusters is maximum. 

The standard calculation method relies on determining the total within-cluster sum of 

squares and considers the squared Euclidean distances between each item and the 

corresponding centroid (Equation 5).  

𝑊(𝑘) =  ∑ ∑ (𝑥𝑖 − 𝑥′𝑘)𝑥∈𝑘 ²𝑘
𝑘=1      (5) 

 

Where: W is the total within-cluster sum of squares for the cluster k; xi is an instance of 

a given variable X and x’ is the centroid value of a given variable X. 

 

The process to calculate the cluster is iterative. “k” firsts random centroids are 

selected, one for each cluster, and used to calculate the total within-cluster sum of 

squares. Then, each instance is assigned to a cluster (as the proximity to the centroid 
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chosen). After the assignment, the centroids for each cluster are recalculated, and the 

process is repeated. The iterations are performed until the clustering process converges 

(minimise the total within-cluster sum of squares). The centroids of each cluster are 

selected to be the values in the parametric simulation. For example, the cluster centroids 

were 1.20 m²/student and 2.29 m²/student for variable X27 (density of people). 

 

2.5. Parametric simulation 

 

The previous steps provided evidence to model the archetypes. The massing 

models were defined according to the subspaces identified in the descriptive analysis. 

This is a subjective process that has to be performed by an analyst. This framework 

proposes to begin with a minimal model, once an archetype intends to generalise 

conditions. OpenStudio® was used to support the modelling process. 

More than one building massing model was developed since variations in the 

subspace’s areas were significant for the entropy analysis. This analysis is particular for 

each building stock; once there are architectonical rules that are hardly interpreted by 

algorithms. Then, we considered the shape rules identified when composing the 

different massing models. The shape rules provide information about the typical 

building shapes and layout that supports the creation of simulation models. Regarding 

the current example, seven building shapes were identified for school buildings in 

Brazil. 

Then, the simulation models are composed of fixed parameters and variable 

parameters. Variable parameters were programmed using parametric simulation tools 

(Parametric object in EnergyPlus and R environment support). In this framework, we 

employed a factorial experiment for the parametric simulation. Thus, all variations 

considered for every variable are combined with each other, i.e. the number of total 

simulations is the product of all number of clusters considered. 

The entropy analysis defined which variables should be varied in the 

simulations, and the cluster analysis defined the values for each scenario for those 

variables. For the example used in this paper, Table 5.3 shows the scenarios evaluated 

in the parametric simulation. 
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Table 5.3 – Scenarios evaluated in the parametric simulation 

Aspect Object 
Number of 

clusters 
Description 

Descriptive 

characteristics* 

Building shape 7 

Scenario 1: Shape E 

Scenario 2: Shape L 

Scenario 3: Shape H 

Scenario 4: Shape O 

Scenario 5: Shape U 

Scenario 6: Rectangular 

Scenario 7: Multiple Buildings 

Operation time 2 

Scenario 1: School with day shift (8 hours) 

Scenario 2: School with day and night shift (14 

hours) 

HVAC type 2 

Scenario 1: HVAC in office rooms, library, and 

computer lab; 

Scenario 2: Scenario 1 + classrooms 

Weather 8 Eight climatic zones (Table 5.4) 

Specific features 

Subspaces’ 

area 
- Variations according to the building shape 

Density of 

people 
2 

Scenario 1: High density in classrooms (1.20 

m²/student) 

Scenario 2: Low density in classrooms (2.29 

m²/student) 

Refrigerators 2 
Scenario 1: High EPD in the kitchen (5.77 W/m²) 

Scenario 2: Low EPD in the kitchen (3.05 W/m²) 

Lights 2 
Scenario 1: High LPD (11.09 W/m²) 

Scenario 2: Low LPD (3.37 W/m²) 

* Clusters obtained through subjective analysis, not k-means method. 

 

Other variables were adopted as fixed values according to the entropy analysis. 

These values are presented in Table 5.6 (Results and discussion section). For example, 

EPDs equal to 50.5 W/m² and 99.4 W/m² were considered for office rooms and 

computer labs, respectively. 

In this case, 1,792 simulations were run for one year. The simulations were 

performed using the EnergyPlus engine (version 9.4). Some specific parameters of the 

simulations are described as follows: 

• Ground domain model: a ground domain slab model was modelled 

considering an undistributed finite-difference algorithm. General soil 

thermal conductivity of 1.5 W/m.K, soil density of 1,250 kg/m³, and soil 

specific heat of 1,500 J/kg.K were considered.  

• HVAC system: An Ideal Loads HVAC template was considered for each 

room for the air-conditioning model. A system with cooling system with 

direct expansion with a cooling setpoint of 24°C and a heating setpoint 

of 18°C was considered. An average coefficient of performance (COP) 
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was used to convert the thermal energy into electricity consumption; as 

suggested in the Brazilian Regulation (CB3E, 2017), a reference COP of 

2.6 W/W was adopted. 

• Energy Management System (EMS): To properly model the natural 

ventilation effect in buildings (mixed-mode building operation), which is 

common in Brazil, an EMS algorithm was applied to regulate the turning 

on/off of air-conditioning and opening/closing the windows in each air-

conditioned room. The criterion was to turn on the air-conditioning (and 

windows closed) when the operative temperature of the zone was higher 

than 26°C (cooling) and lower than 16°C (heating), considering that 

there are people in the room. Outside this range, windows were 

considered open and air-conditioning off. 

• Schedules: Occupancy schedules were defined according to the analysis 

of the descriptive characteristics. Understandably, occupancy behaviour 

plays an important role in building performance assessment, and several 

pieces of research have been conducted to enhance the representation of 

the user in simulations. However, this framework proposes modelling for 

benchmarking; thus, standard occupation patterns were set. Figure 5.3 

presents the values adopted for the example analysis. A further 

improvement for this framework might be including an interpretation of 

obXML to enhance the representation of the occupant behaviour in a 

probabilistic way. 

 

 

Figure 5.3 – Schedules considered in the simulation. 
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Eight weather data were used in the simulations to consider all eight Brazilian 

climatic zones proper. The data was obtained from the Climate One Building website, 

in TMY format with the database of 2018. Table 5.4 shows the cities chosen to 

represent each climate and their characteristics. 

 

Table 5.4 – Climates considered in the parametric simulation. 

City 

Brazilian Climate 

zone (NBR 15220 

2005) 

ASHRAE classification 

(ASHRAE 169-2013) 

Lat. 

(°) 

Long. 

(°) 

Alt. 

(m) 

Cooling 

Degree 

Hours* 

Curitiba (PR) 1 3A (Warm Humid) -25.43 -49.27 924 9,397 

Pelotas (RS) 2 3A (Warm Humid) -31.72 -52.33 18 18,657 

São Paulo (SP) 3 2A (Hot Humid) -23.85 -46.64 792 14,172 

Brasília (DF) 4 2A (Hot Humid) -15.78 -47.93 1160 16,624 

Santos (SP) 5 2A (Hot Humid) -23.93 -46.32 14 40,003 

Goiânia (GO) 6 1A (Very hot and humid) -15.37 -48.78 770 31,081 

Picos (PI) 7 1A (Very hot and humid) -7.07 -41.40 233 53,316 

Cuiabá (MT) 8 0A (Extremely hot humid) -15.62 -56.00 151 59,551 

* CDH calculated considering the base temperature of 15°C. 

 

The outputs of the simulations that were analysed were the energy use intensity 

for each end-use (kWh/m².year), i.e. the annual electricity consumption of each end-use 

divided by the total gross floor-plan area of each building model. The end-uses were 

lighting, equipment, cooling, and heating. 

Different building orientations were tested. A simple comparison showed that 

this factor did not impact the final results of this typology; thus, a single orientation was 

defined. 

 

2.6. ANN model 

 

The simulation results were used to developed an Artificial Neural Network 

(ANN) model. An ANN is a non-linear multivariate model composed of nodes 

(neurons) organised in layers and connected by synaptic weights to replicate the 

functioning of the human brain. There is an input layer, a hidden layer (or several 

hidden layers), and an output layer. The arrangement of the ANN makes this method a 

robust approach to model complex relationships between input and outputs. The ANN 

is modelled through a supervised procedure that contains a training process (using 80% 



167 

 

of the dataset) and a testing process (using the remaining 20%). During the training 

process, the output variables are known, and the weights and coefficients of the nodes 

and synaptic connections are calculated. An activation function is responsible for 

starting the calculations, providing random values for the synaptic weights, while 

iterations are performed to approximate the output calculated by the ANN to the output 

values in the training dataset. During the testing process, new input values are submitted 

to the ANN, and the predicted output is compared to the actual output to determine the 

ANN performance (AHMAD et al., 2018). In this paper, the R environment (package 

“neuralnet”) was employed to create the ANN using the logistic activation function.  

The ANN was employed as a robust and useful estimator to serve as the 

benchmarking model. Thus, the EUI predicted by the ANN is the benchmark (a 

reference value of energy performance in typical conditions) that can be compared to 

the actual EUI of a given school in order to measure its performance. 

The inputs of the ANN are the parameters used in the simulations, and the 

output was the EUI. The dataset used for training and testing was the simulation results 

(1,792 observations). Table 5.5 presents the inputs and outputs. Since the output is the 

EUI (which is already normalised in terms of the floor-plan area), the size of the 

building was not an input. 

 

Table 5.5 – Input and output parameters of the ANN model. 

Type Parameter Unit Data range 

Input Cooling Degree Hours (base temp.: 15°C) degree-hours 9,397-40,003 

Input Operation time hours 8 - 12 

Input Total occupancy people/m² 0.50 - 1.35 

Input Air-conditioned area ratio % 16% - 75% 

Input Total equipment power density W/m² 6.39 - 10.59 

Input Total lighting power density W/m² 3.37 - 11.09 

Output Whole-building EUI kWh/m².year 8.8 – 157.8 

 

The dataset was partitioning, considering a random selection of 80% of the 

dataset (1,433) for training and 20% (359) for testing. A normalisation step was carried 

out in all variables (through the same process described in Equation 3), as 

recommended by good ANN development practices. Each input and output neuron 

ranged from 0 to 1. After the ANN development, the output value was transformed 

again in EUI by multiplying it by the average simulated EUI. 
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Different ANN arrangements were tested during the training and testing stages 

to find the optimum configuration for the given data. Several combinations of layers 

and neurons were tested, considering the maximum of six layers and neurons (the same 

number of input nodes). The best performance was obtained using two hidden layers 

with six neurons each. 

The performance of the ANN was measured through the Root Mean Squared 

Error (RMSE) (Equation 6), considering the two datasets (training and testing datasets). 

The lower the RMSE, the greater the capacity of the ANN in predicting EUIs similar to 

the actual EUIs. This is a valuable metric to measure the performance of continuous 

estimators as the ANN used in this paper. 

 

𝑅𝑀𝑆𝐸 =  √∑ (𝑥𝑖−𝑥′𝑖)2𝑁
𝑖=1

𝑁
     (6) 

 

Where: RMSE is the Root Mean Squared Error (kWh/m².year); xi is the EUI of a given 

“i” case (kWh/m².year); x’ is the EUI predicted by the ANN (kWh/m².year); N is the 

number of cases, i.e. 1,792. 

 

 Also, the Coefficient of variance of RMSE was calculated (Equation 7) to 

relativise the result in terms of percentage. The lower the CV(RMSE), the greater the 

capacity of the ANN in predicting the output correctly. 

 

𝐶𝑉(𝑅𝑀𝑆𝐸) =
𝑅𝑀𝑆𝐸

𝑌′      (6) 

 

Where: CV(RMSE) is the RMSE is the Coefficient of variance (%); the RMSE is the 

Root Mean Squared Error (kWh/m².year); and Y’ is the s the mean target output 

(kWh/m².year). 

 

Moreover, a cross-validation was carried out by fitting the actual versus 

predicted plot for both datasets. The closer to the main diagonal the points converge, the 

greater the capacity of the ANN in predicting the typical conditions of the building 

stock. 
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2.7. Benchmarking the actual stock 

 

The benchmarking model can be used to benchmark the actual building stock. 

The input dataset of 417 school buildings in Brazil was used for such an aim. The actual 

dataset features were inserted in the ANN, and the predicted EUI from the ANN was 

compared to the actual EUI of each building. Then, it was possible to benchmark each 

building of the dataset. A graphical analysis shows green bars for EUIs lower than the 

benchmark and red bars for EUI higher than the benchmark. 

End-uses are important to address in order to evaluate the efficiency of a 

building. This model was not meant to estimate the end-uses in the ANN because the 

inputs are already indications of the end-uses (EPD and LPD). However, it is possible to 

assess typical end-uses for the building typology for each climatic zone evaluated by 

calculating the average end-uses of the simulation scenarios evaluated. Two scenarios 

were considered, one for highly air-conditioned schools (scenario 2 of HVAC type in 

Table 5.3) and one for lower air-conditioned schools (scenario 1 of HVAC type in 

Table 5.3). 

Finally, a case of a specific school building was analysed individually. The 

school “Almirante Carvalhal”, located in Florianópolis (southern Brazil) was 

benchmarked using the ANN. The school has a total floor-plan area of 1,428 m². The 

input parameters are: 

• CDH15: 28,602 degree-hours; 

• Operation time: 8 hours; 

• Total occupancy: 0.98 people/m²; 

• Air-conditioned area ratio: 50%; 

• Total EPD: 14.78 W/m²; 

• Total LPD: 3.12 W/m². 

 

This building was one of the three buildings with an energy audit; then, an end-

use level comparison was performed by comparing the end-uses proportions identified 

in the energy audit and the end-uses of the benchmark predicted by the ANN. 
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3. Results and Discussions 

 

3.1. Building stock modelling 

 

The stock modelling process includes a composition of an inventory of 

parameters followed by an entropy and a cluster analysis of those parameters. This step 

originated the parameters to be inserted in the archetype simulation. 

The entropy analysis measures the degree of uncertainty of each parameter 

considering the available information in the dataset. The relative entropy (the rate 

between the maximum entropy, or uncertainty, and the entropy of the parameter) is a 

useful metric to visualise how much uncertainty a parameter holds in terms of 

percentage. Parameters with relative entropy lower than 50% were fixed in the 

simulation, while parameters with relative entropy higher than 50% were varied through 

cluster analysis. Table 5.6 presents the entropy, the relative entropy, and the adopted 

value for each fixed parameter of the inventory. 

 

Table 5.6 – Fixed parameters used in the simulations 

# Parameter Unit Range 
Entropy 

(bits) 

Relative 

Entropy 

Median 

(adopted) 

X2 Floor height m 2.8 - 3.2 1.48 49% 3.0 

X3 ExtWalls-Transmitance W/m²K 1.8 - 2.5 0.83 28% 2.4 

X4 ExtWalls-Thermal Capacity J/m²K 180 - 240 0.83 28% 240.0 

X5 ExtWalls-Solar absorptance % 0.6 - 0.8 0.68 23% 0.7 

X6 ExtWalls-Thickness m 15 - 30 1.03 34% 20.0 

X7 IntWalls-Transmitance W/m²K 1.8 - 2.5 0.83 28% 2.4 

X8 IntWalls-Thermal Capacity J/m²K 180 - 240 0.83 28% 240.0 

X9 IntWalls-Solar absorptance % 0.6 - 0.8 0.68 23% 0.7 

X10 IntWalls-Thickness m 15 - 30 1.03 34% 20.0 

X11 Roof-Transmitance W/m²K 0.8 - 2.7 0.86 29% 2.1 

X12 Roof-Thermal Capacity J/m²K 220 - 258 0.55 18% 238.0 

X13 Roof-Solar absorptance % 0.6 - 0.8 0.68 23% 0.7 

X14 Roof-Thickness m 1.3 - 1.5 0.55 18% 1.3 

X15 Glazing-Transmitance W/m²K 5.3 - 5.7 0.21 7% 5.7 

X16 Glazing-SHGC % 0.8 - 0.8 0.21 7% 0.8 

X17 Glazing-Opening Factor % 0.3 - 0.7 0.55 18% 0.5 

X20.1 WWR-Subspace 1 % 0.1 - 0.8 1.10 37% 0.4 

X20.2 WWR-Subspace 2 % 0.1 - 0.8 1.10 37% 0.4 

X20.3 WWR-Subspace 3 % 0.1 - 0.8 1.10 37% 0.4 

X20.4 WWR-Subspace 4 % 0.1 - 0.8 1.10 37% 0.4 

X20.5 WWR-Subspace 5 % 0.6 - 1 0.79 26% 1.0 
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Table 5.6 – Fixed parameters used in the simulations. (continuation). 

# Parameter Unit Range 
Entropy 

(bits) 

Relative 

Entropy 

Median 

(adopted) 

X20.6 WWR-Subspace 6 % 0 - 0.8 1.42 47% 0.2 

X20.7 WWR-Subspace 7 % 0.1 - 0.3 1.02 34% 0.2 

X21.1 HorShading-Subspace 1 m² 0.5 - 0.9 0.41 14% 0.8 

X21.2 HorShading-Subspace 2 m² 0.5 - 0.9 0.41 14% 0.8 

X21.3 HorShading-Subspace 3 m² 0.5 - 0.9 0.41 14% 0.8 

X21.4 HorShading-Subspace 4 m² 0.5 - 0.9 0.41 14% 0.8 

X21.5 HorShading-Subspace 5 m² 0.5 - 0.9 0.41 14% 0.8 

X21.6 HorShading-Subspace 6 m² 0.5 - 0.9 0.41 14% 0.8 

X21.7 HorShading-Subspace 7 m² 0 - 0.8 0.41 14% 0.8 

X22.1 VerShading-Subspace 1 m² 0.2 - 0.6 1.42 47% 0.4 

X22.2 VerShading-Subspace 2 m² 0.2 - 0.6 1.19 40% 0.4 

X22.3 VerShading-Subspace 3 m² 0.2 - 0.6 1.19 40% 0.4 

X22.4 VerShading-Subspace 4 m² 0.2 - 0.6 1.19 40% 0.4 

X22.5 VerShading-Subspace 5 m² 0 - 1 0.21 7% 0.0 

X22.7 VerShading-Subspace 7 m² 0 - 0.1 0.21 7% 0.0 

X23.1 
EquipLoads-Subspace 1 

W/m² 
15.2 - 

239.4 
1.19 40% 21.2 

X23.2 EquipLoads-Subspace 2 W/m² 3.3 - 20.7 0.41 14% 20.7 

X23.3 
EquipLoads-Subspace 3 

W/m² 
37.9 - 

346.5 
1.41 47% 99.4 

X23.4 
EquipLoads-Subspace 4 

W/m² 
43.5 – 

57.0 
0.41 14% 50.5 

X23.6 EquipLoads-Subspace 6 W/m² - - N/A 0.0 

X23.7 EquipLoads-Subspace 7 W/m² - - N/A 0.0 

X26 HeaterThermalEfficiency W/W 1-1 0.00 N/A 0.0 

X27.2 People-Subspace 2 people/m² 2 – 8 0.29 10% 4.0 

X27.3 People-Subspace 3 people/m² 0 - 20 0.39 13% 7.0 

X27.4 People-Subspace 4 people/m² 2 - 6 0.24 8% 7.0 

X27.5 People-Subspace 5 people/m² - - N/A 0.0 

X27.6 People-Subspace 6 people/m² - - N/A 0.0 

X27.7 People-Subspace 7 people/m² - - N/A 0.0 

 

Most of the envelope characteristics were considered as fixed parameters since 

school buildings follow very similar standards for construction. Equipment loads per 

floor-plan area in classrooms, libraries, and computer labs, were surprisingly consistent 

and were adopted as fixed parameters. Equipment loads in kitchens are due to 

refrigerators and freezers, which presented significant variation in the building stock. 

Equipment loads in bathrooms and aisles were not considered in the model. Whenever 

empty observations happened in the analysis (such as the equipment loads in 

bathrooms), it was represented with zero entropy and a non-applicable tag (N/A) in 

relative entropy. Another example like this is the occupation of aisles, bathrooms, and 

the kitchen.  
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Very few schools presented water heaters since it is not part of the culture in 

Brazil that elementary and high schools provide baths. Then, the water heater was 

disregarded in the simulation since it was not considered a typical condition.  

Table 5.7 shows the parameters with relative entropy higher than 50% and 

considered variables in the simulation model. Additionally, the last column presents 

how the parameters were varied in the parametric simulation and the result of the cluster 

analysis, i.e. the values adopted in each scenario of parametrisation. 

 

Table 5.7 – Variable parameters used in the simulations 

# Parameter Unit Median Range 
Entropy 

(bits) 

Relative 

Entropy 

Scenarios for 

parametrisation 

(clusters) 

X1.1 Area-Subspace 1 m² 604.0 
223.3 - 

1579.2 
2.4 79% 

Seven floor-plan 

areas according to 

each building 

shape 

X1.2 Area-Subspace 2 m² 67.7 20.7 - 131.3 2.7 89% 

X1.3 Area-Subspace 3 m² 50.3 1 - 131.8 2.0 68% 

X1.4 Area-Subspace 4 m² 84.8 14.9 - 282.1 2.5 82% 

X1.5 Area-Subspace 5 m² 190.0 80.1 - 873.6 2.0 68% 

X1.6 Area-Subspace 6 m² 61.8 28.4 - 265.7 2.0 66% 

X1.7 Area-Subspace 7 m² 31.0 7.1 - 96.4 2.2 73% 

X23.4 EquipLoads-Subspace 7 W/m² 4.7 4.4 - 9.7 1.5 50% 

Scenario 1: EPD of 

5.6 W/m² in the 

kitchen 

Scenario 2: EPD of 

3.5 W/m² in the 

kitchen 

X24.1 LightLoads-Subspace 1 W/m² 12.5 0.5 - 23.5 1.9 62% 

Scenario 1: High 

average LPD 

(11.09 W/m²) 

Scenario 2: Low 

average LPD (3.37 

W/m²) 

X24.2 LightLoads-Subspace 2 W/m² 9.0 0.5 - 24 1.9 62% 

X24.3 LightLoads-Subspace 3 W/m² 9.0 0.5 - 25.5 1.5 51% 

X24.4 LightLoads-Subspace 4 W/m² 9.7 4.9 - 18 1.6 52% 

X24.5 LightLoads-Subspace 5 W/m² 5.5 1.2 - 15.5 1.8 61% 

X24.6 LightLoads-Subspace 6 W/m² 5.0 1.2 - 16 1.6 54% 

X24.7 LightLoads-Subspace 7 W/m² 15.5 1.2 - 15.5 1.8 61% 

X25.1 HVAC-Subspace 1 % 68.0 0 - 97.9 2.6 87% 

Scenario 1: HVAC 

in office rooms, 

library, and 

computer lab; 

Scenario 2: 

Scenario 1 + 

classrooms 

X26.1 People-Subspace 1 
student/

m² 
0.5 0 - 5.1 2.7 89% 

Scenario 1: High 

density in 

classrooms (1.20 

m²/student) 

Scenario 2: low 

density in 

classrooms (2.29 

m²/student) 
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The areas of all subspaces were variables. Since the subspace’s composition 

consists of a subjective evaluation, the variation of each subspace area was considered 

in different shape compositions (Table 5.8). Equipment loads in the kitchen were 

considered a variable when different refrigerators and freezers were found. The cluster 

analysis resulted in two scenarios. Lighting loads were also very irregular – which 

carries uncertainty to the stock model. Two scenarios were also defined to represent this 

distribution of different lighting loads. 

 

Table 5.8 – Summary of the floor-plan area of the simulation models. 

Subspace Name 

Floor-plan area (m²) 

Shape E Shape H Shape L Shape O Shape U Rec. 
Multiple 

buildings 

Subspace 1 Classrooms 799.7 609.0 623.3 637.0 500.5 700.7 638.4 

Subspace 2 Library 67.8 72.0 70.0 59.5 50.1 82.0 72.0 

Subspace 3 Computer lab 50.0 72.0 49.0 54.6 50.1 70.0 50.0 

Subspace 4 Office rooms 100.0 217.8 120.0 100.0 52.5 98.0 80.1 

Subspace 5 Aisles 240.9 597.7 317.7 260.5 109.8 318.3 146.0 

Subspace 6 Bathroom 44.8 38.8 68.6 58.8 58.9 89.0 103.0 

Subspace 7 Kitchen 51.0 87.8 42.0 74.2 60.0 83.3 80.0 

Total 1,354.1 1,695.0 1,290.6 1,244.6 881.8 1,441.3 1,169.5 

 

During the subjective evaluation of the building stock sample, seven building 

shapes were identified. It was important to represent those different building shapes in 

the archetype once the shape has an important role in the energy performance of the 

building, as shown in the study of several features to categorise buildings according to 

their performances (ZHAN et al., 2020b). It is important to keep in mind that the 

benchmarking is meant to represent typical conditions and the output available is the 

EUI (in terms of kWh/m².year); then, the size of the building is relativised considering 

the indicator employed. Figure 5.4 presents the seven archetypes obtained. 
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Figure 5.4 – Archetypes obtained for each building shape. 

 

Differences in shapes imply different building envelope interactions with the 

exterior, especially considering the self-shading dynamic. The building orientation was 

not significant for this typology because the central part of the building comprises the 

same subspace (classrooms), making each building shape have a similar number of 

classrooms oriented equally. Although the building massing model and the shape 

configuration were a product of a subjective evaluation in this study, and there is an 

uncertainty accumulated in this process, we understand that the identification of shape 

rules is used for similar purposes (GRANADEIRO et al., 2013). However, with the 

emerging tools for generative design and parametric modelling (YU; GERO; GU, 

2015), there is an opportunity to improve this method considering integrating such 

tools. Other studies took advantage of modelling buildings using Grasshopper to 

improve building energy performance through parametric design (KITCHLEY; 

SRIVATHSAN, 2014). The descriptive analysis of this method could be translated to a 

set of Grasshopper rules, and generative archetypes can be modelled using an auxiliary 

script. This approach was disregarded in this method because it demands a specific 

study considering the programming implications and shape grammar definitions 

process; however, we see it as the following steps to automatise the framework 

proposed. 

 

3.2. Benchmarking model and validation 

 

The archetypes were simulated considering the scenarios for the parameter 

variables and the different climates. The results of the simulation models served as 
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parameters to model an ANN for benchmarking the actual stock. The benchmarking 

model is necessary to generalise the typical results obtained in the simulations. The 

simulations were responsible for providing typical and extreme cases. Then, a statistical 

generalisation process is needed to allow the placement of an actual building 

performance among these typical and extreme cases. Other studies used regression 

analysis (BORGSTEIN; LAMBERTS, 2014), convex non-parametric least-square 

analysis (CHUNG; YEUNG, 2017), and two-stage regression analysis (CHUNG; 

YEUNG, 2021), among others. In this paper, an ANN considering two hidden layers 

with six and three neurons was built. Figure 5.5 shows the visual aspect of the ANN 

built. 

 

 

Figure 5.5 – ANN of the benchmarking model. 

 

Several ANN arrangements were tested to a final structure, considering RMSE 

and CV(RMSE) reduction. The ANN serves as a regressive estimator by inputting new 

values in the input neuron and providing the predicted value by the output neuron. A 

validation step was performed by examining both training and testing datasets and 

measuring the capacity of the ANN in predicting the EUIs correctly. Figure 5.6 shows 

the plot of the predict versus training and testing data. The closer the points are to the 
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diagonal line, the best the predicting capacity of the ANN. The dashed lines represent 

the interval of confidence for the model. 

 

 

Figure 5.6 – ANN performance evaluation. 

 

For the training data, the RMSE was 6.26 kWh/m².year, and the CV(RMSE) was 

8.47%. For the testing data, RMSE was 6.15 kWh/m².year, and the CV(RMSE) was 

8.17%. It is possible to see that, in general, the ANN had a good prediction capacity 

once most points are placed inside the interval of confidence, except for a few cases. 

Although a lower RMSE indicates a good ANN performance, there is no consensus 

regarding an optimal value once the RMSE is restricted to each ANN and its analysis. 

The CV(RMSE) corresponds to a more understandable metric, ranging from 0% (zero 

error) to 100% (maximum error).  

Other studies in literature achieved similar performance indexes. The study of 

Hong et al. (2014) also proposed an ANN for benchmarking school buildings in the UK 

and achieved an RMSE equal to 11.6 kWh/m² and a CV(RMSE) equal to 23.5% for 

predicting electric uses (HONG et al., 2014). Wong et al. (2010) used an ANN to assess 

daily performance in office buildings and achieved an RMSE of 2578 kWh and 

CV(RMSE) of 9.4% for predicting the whole-building energy consumption (WONG; 

WAN; LAM, 2010). Wang et al. (2019) used an ANN and achieved CV(RMSE) from 

10% to 35% for predicting plug loads (WANG; HONG; PIETTE, 2019), and Zhang et 

al. (2015) achieved an RMSE of 12.09 and CV(RMSE) of 14.01% for energy 

performance prediction on a daily-basis (ZHANG et al., 2015). Veiga et al. (2021) 

proposed a Support Vector Machine for Bank Branches and achieved an RMSE of 4.45 
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kWh/m².year. Thus, it is possible to understand that the RMSE achieved is acceptable 

considering the aim and approach employed. 

Figure 5.7 shows the breakdown of the predicted versus testing data plot for 

each city considered in the study. Since the climate is a crucial factor in the building 

performance analysis, it is important to assess how the ANN addresses the predictions 

under different climate conditions. It is possible to see that zones 1, 2, and 8 correspond 

to good predictions. Results showed that the ANN predicts slightly lower EUIs for 

buildings in zones 3, 5 and 7, and slightly higher EUIs for buildings in zones 6 and 4. In 

any case, the output values were always inside the interval of confidence. 

A possible solution to mitigate this issue is to create an ANN for each climatic 

zone. However, we constructed the ANN using the CDH as a parameter for estimating 

(using eight CDH to train and test the network, one for each climate used in the 

simulations). This means that the network can be generalised for other cities with other 

CDH. 

 

 

Figure 5.7 – Evaluation of the ANN performance for the cities analysed. 

 

The ANN is used to benchmark the energy performance of buildings in the 

stock. To assess the actual application of such benchmarking method, we used the ANN 

to benchmark the 427 buildings used in this study. This sample was gathered in our 

previous study (GERALDI; GHISI, 2020b) and presented in Section 0. Figure 5.8 

presents the EUI predicted by the ANN as the benchmark (blue bars in inverse order); 
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and the actual EUIs in the x-axis. Green bars represent buildings in which the actual 

EUI was lower than the benchmark, referring to an efficient outcome, while red bars 

represent buildings in which the actual EUI was higher than the benchmark, marking 

reference to an inefficient outcome. 

 

Figure 5.8 – Application of the benchmarking method in the actual building stock. 

 

Figure 5.8 shows the actual EUI shorted in an increasing aspect regarding the 

difference of actual and benchmark EUI (to group green and red bars). However, the 

corresponding benchmark EUI for each actual EUI was consistent no matter how the 

actual EUI increased. In other words, the benchmarking model (ANN) always predicts 

inside some range. This is important for a benchmarking model because it makes the 

model robust to identify inefficiencies. After all, the benchmarking model is meant to 

replicate the actual building stock performance and provide reliable typical performance 

values instead. Figure 5.9 shows the histograms for both modelled and actual EUIs for 

the dataset analysed. It is possible to see that the average EUI in the actual stock was 

19.29 kWh/m².year, while the average EUI for the benchmarks was 18.63 kWh/m².year. 

Although the distributions had an overlap, it is possible to see that the actual EUI 

distribution had more frequency in the higher bins (between 20.10 to 54.60 

kWh/m².year), while the modelled EUI distributions had more frequency in lower bins 

(between 7.40 to 20.10 kWh/m².year). This denotes that the actual EUI distribution 

indeed has more observations with higher EUIs. Moreover, the modelled EUI 

distribution has more observations around the mean value, demonstrating that extreme 
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values are not modelled by the benchmarking model. This is exactly what is expected of 

a benchmarking model which intends to model typical EUIs. 

 

 

Figure 5.9 – Histograms of the modelled and actual EUI for the school building dataset 

(417 schools). Note: Napierian logarithm. 

 

Both average actual and modelled EUIs were significantly low compared to 

EUIs in schools in other countries, for example, 86 kWh/m².year in Italy, 63 

kWh/m².year in Cyprus (PEREIRA et al., 2014). However, those are developed 

countries. By comparing the average EUI with a reference school in South Africa 

(ranging from 10 to 24 kWh/m².year Samuels and Booysen, 2019), the average EUIs 

were similar. 

Both Figures 8 and 9 showed that the building stock showed a tendency to 

inefficiency. The average benchmark EUI was 3.4% lower than the average actual EUI. 

It is noticeable that most of the buildings in the stock (62.2%) had an actual EUI higher 

than the benchmark, while only 37.8% had a EUI lower than the benchmark. The 

building stock in Brazil is mostly composed of schools without air-conditioning in 

classrooms, around 92%, according to Geraldi and Ghisi, (2020b). Then, lighting 

systems and inefficient equipment can be pointed as the leading causes for inefficiency 

since they are the primary energy end-uses. As pointed by other studies, lighting can 

account for the expressive share of the total EUI in schools in developing countries 

(SAMUELS; BOOYSEN, 2019). Reinforcing this, in our previous research regarding 
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the main issues related to the school building, the Principals reported main problems 

with the electrical system and old appliances (GERALDI; GHISI, 2020b). Moreover, a 

lack of planning and management to implement new appliances and systems in the 

schools might lead to difficulties in replacing inefficient systems. 

It is possible to see that some specific bars in Figure 5.8 in the actual EUI 

dataset were adequately reproduced by the benchmarking model for both cases (actual 

EUI higher and lower than the benchmark). For example, schools with a high air-

conditioned area rate (bars between 53 and 66 in Figure 5.8) will not necessarily 

implicate an inefficient classification. This school might present some efficiency in its 

operation compared to the typical condition established. 

It is important to mention that here we employed simple efficient/inefficient 

categories just for evaluation of the method proposed. It is essential to mention that 

labelling the efficiency of buildings is not a trivial solution (CLARKE et al., 2009), and 

it has been explored by specific studies (WEI et al., 2018). In fact, “black and white” 

evaluations are not encouraged, and building performance analysis – especially building 

operation – is more like a grey area. The definition of scales of efficiency needs further 

discussion. For example, Veloso et al. (2020) discussed labelled the efficiency of office 

buildings according to percentiles of the EUI distribution. Other example are the 

Brazilian labelling scheme, which proposes a calculation of scales based on the 

relationship between the high-efficient and poor-efficient conditions (CB3E, 2017). We 

did not discuss the labelling scheme here because we believe that this classification is 

related to a broader debate. Instead, we discussed the validity of the ANNs as a 

benchmarking model and the implications in applying the ANN considering actual 

buildings. 

 

3.3. End-uses analysis 

 

The following step in the benchmarking model is to assess the end-uses. 

Assessing the end-uses is important to identify the energy usage pattern in building 

performance analysis.  

In this benchmarking model, typical end-uses for the building stock were 

determined for each climatic zone through the breakdown of the average EUI obtained 

from the simulation results. Since two HVAC scenarios were addressed, the proportions 



181 

 

were calculated considering each HVAC scenario individually. Figure 5.10 presents the 

end-uses. 

 

 

Figure 5.10 – Typical end-uses for schools for each climatic zone in Brazil. (a) End-

uses for high air-conditioned schools; (b) End-uses for low air-conditioned schools. 

 

The cooling loads increase as the CDH increases for both HVAC scenarios. It is 

important to remember that the scenario of high air-conditioned schools considers 

HVAC in classrooms, library, computer lab, and office rooms, while low air-

conditioned schools consider HVAC only in library, computer lab, and office rooms. 

There is a noticeable difference in end-uses for both scenarios since classrooms are the 

leading share in the total area of the schools. The lighting end-uses are similar to other 

studies that addressed end-uses for South Africa (SAMUELS; GROBBELAAR; 

BOOYSEN, 2020), which found 31% to 40% of the total energy consumption for 

schools without air-conditioning, and 14% to 25% for schools with air-conditioning. 

Heating end-uses were almost not present in any case, confirming that heating loads can 

be disregarded in the Brazilian context. 

Hence, the end-uses can be used in the benchmark value output by the ANN to 

serve as a reference for typical conditions that a target building should be performing. 

Finally, a specific school was analysed through the benchmarking model 

proposed. The features of a school in Florianópolis, southern Brazil, was input in the 

ANN to determine the benchmark. Moreover, we applied the proportions of the end-

uses of the climatic zone 3 to perform an energy breakdown of the benchmark – i.e. 

what the expected energy usage in the building evaluated is. Figure 5.11 presents the 
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comparison among the actual EUI of the school, the benchmark, and the energy audit 

performed. The energy audit aimed to estimate the actual energy usage of the school, 

considering an ASHARE level 2 approach and resulted in a reasonable estimation (5% 

difference).  

 

 

Figure 5.11 – Benchmarking of a specific school in Florianópolis. Comparison between 

the actual EUI, the energy audit EUI, and the benchmark estimated by the ANN.  

 

The case analysed presented an actual EUI higher than the benchmark (28.9 > 

24.3 kWh/m².year). By comparing the end-uses estimated by the energy audit to the 

end-uses of the benchmark, it is possible to notice that the energy consumption due to 

equipment was very high (101% higher). The energy audit estimated a lower share for 

cooling compared to the benchmark (20% lower); however, the consumption due to 

equipment not only exceeded the benchmark estimation but also counterweighed the 

reduced cooling consumption. The energy consumption with lighting was consistent 

with the benchmark (only 9% higher). The leading cause for this high energy 

consumption due to equipment is the high number of refrigerators in this school 

compared to the average in the stock. There were observed eight refrigerators in this 

school during the energy audit. Also, the refrigerators were very old and inefficient. 

Therefore, this is the kind of analysis that a benchmarking model can assess. The 

proposition of the framework in this study supports an in-depth evaluation of the 

performance of the building, considering a reliable and fair comparison with the 

building stock. Since it is an evidence-based approach (because the inventory analysis 

sustains the archetypes), it translates to the typical conditions of reality. By comparing 

the actual performance of a building with its typical condition, it is possible to identify 

possible causes for inefficiencies or prospect examples of efficiencies, whenever is the 
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case. This analysis aims to improve the overall performance of the buildings of the 

entire building stock. This study comprises both building-level and stock-level 

perspectives (GERALDI; GHISI, 2020a), because it uses specific building features 

through a bottom-up approach to assess the building stock performance and, finally, 

supports the specific building evaluation.  

As a final remark on this topic, it is important to address future estimations for 

the building stock studied. Although the current scenario presents a lack of air-

conditioning in schools in Brazil, there is a tendency to installing air-conditioning over 

the time, as estimated by the increase of the EUI in the past decades and prediction until 

2060 (ZHONG et al., 2021). This is a reality already reported in other developing 

countries. China reported an increase of the EUI from 86 kWh/m².year in 2003 to 105 

kWh/m².year in 2017 (CHUNG; YEUNG, 2020) due to an air-conditioning 

implementation policy. Currently, public schools in Brazil lack structure management 

(GERALDI; GHISI, 2020b) and internal environmental quality (SARAIVA et al., 

2019), implying air-conditioning installation to mitigate this issue. Thus, if the status 

quo is maintained, an increase of the average EUI can be expected for Brazil just as 

occurred in China. This is obviously against the international guidelines to reduce 

energy consumption to mitigate climate change effects – while passive strategies such 

as envelope improvement and photovoltaic generation are encouraged. At the same 

time, the lack of air-conditioning can be faced as an energy poverty issue – as reported 

by other developing countries (SAMUELS; GROBBELAAR; BOOYSEN, 2020).  

Thus, a comprehensive evaluation has to be carried out to propose an integrative 

solution. This study was essential to reveal the current energy performance state of the 

building stock analysed – and outlined possible evaluations that the framework 

proposed can reach.  

 

4. Conclusions 

 

This study aimed to propose a framework for benchmark modelling considering 

the uncertainty reduction of the archetype parameters. Data-driven approaches were 

used to compose the archetypes, considering both Information Theory to measure and 

identify uncertainties and Cluster Analysis to select parameter values. The archetypes 

were simulated considering several scenarios through parameter combinations. An 

ANN was used to develop the benchmarking model to generalise the results and an 
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actual sample of buildings was benchmarked. Therefore, the main conclusions of this 

study are outlined as follows: 

• A protocol was proposed to organise the building stock information into 

a standard manner that can be adapted for any building typology. The 

inventory structure supports the input of objects in the EnergyPlus 

model, simplifying the modelling and the parameterisation process. 

• The entropy analysis measured the uncertainty of the parameters filled in 

the inventory, and the cluster analysis selected the relevant scenarios. 

Combining both approaches was useful to improve variability in the 

benchmarking model (and reducing uncertainty by inserting in the model 

several observations instead of a single or fixed values) while also 

contributing to optimising the number of simulations.  

• The benchmarking model using ANN resulted in high accuracy levels. 

The model could predict with satisfactory accuracy both training and 

testing datasets (which is composed of inputs unseen by the ANN). 

• The energy performance of the building stock sample evaluated 

demonstrated a tendency to inefficiency, once around 62.2% of the 

building stock showed actual EUIs higher than their benchmarks (in 

average 3.4% higher). The leading cause for the inefficiency might be an 

inefficient use of the lighting systems and inefficient equipment. 

• Energy end-uses for each climatic zone were obtained from the 

simulation outcomes, considering two scenarios: high air-conditioned 

schools (in which cooling loads represented the main end-use share); and 

low air-conditioned schools (in which equipment loads represented the 

main end-use share). Heating loads were not significant in any climate 

for the Brazilian schools. 

• By evaluating a specific case, the application of the benchmarking 

method was demonstrated in practice. The comparison of the actual EUI 

with the benchmark demonstrated an inefficiency due to old and 

inefficient refrigerators. 

 

 

 



185 

 

The limitations of the study are addressed as follows: 

• The modelling of subspace geometries is still dependent on subjective 

evaluations. This issue could be improved by using parametric design 

tools such as Grasshopper in an additional improvement of the method. 

• The framework disregards the modelling of surroundings – which is hard 

to establish typical realistic conditions. In this case, the typical 

surrounding condition was set as none; but this condition should be 

deeply studied in further studies. 

• As in all simulation modelling, the framework is limited by 

computational capacity. In the example carried out, 1,792 cases were 

run, but as the uncertainty increases, the number of simulation runs 

increases. 

 

The limitations addressed can be accepted as opportunities to improve the 

framework. 

Finally, the main conclusion is that an innovative method to improve the 

reliability of the archetype-based benchmarking model was proposed and showed good 

useability when tested using actual cases. The proposed framework has a strong 

potential for application in other cities in Brazil and other typologies. 
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6. Application of the building stock model 

 

This Chapter is the transcription of the following paper: 

 

Impact of implementing air-conditioning systems on the school building 

stock in Brazil considering climate change effects: a bottom-up 

benchmarking 

Authored1 by Matheus Soares Geraldi, Mateus Vinicius Bavaresco, Veronica 

Gnecco Martins, Enedir Ghisi and Michele Fossati 

Published in the Proceedings of Building Simulation 2021, and presented in 2nd 

September 2021 

 

Abstract 

This study aimed to investigate future energy benchmarks for the school building stock 

in Brazil, considering the gradual implementation of air-conditioning systems in those 

buildings and the influence of future climate conditions. Archetypes were simulated 

using EnergyPlus for four cities in Brazil, representing predominant weather data in the 

country. The models were simulated considering air-conditioning implementation in 

two scenarios: a) administrative and lab environments; b) administrative, labs and all 

classrooms. Modified-weather data considering IPCC scenario A2 was used to include 

climate change trends for 2050 and 2080. The average and standard deviation of Energy 

Use Intensity (EUI) were analysed. Results showed an increase of the average EUI of 

the school building stock in Brazil considering the air-conditioning implementation, 

raising 88% concerning the actual EUI if the systems were implemented today, 8% in 

2050 and 43% in 2080. Conclusions support that upgrading thermal comfort conditions 

in those buildings require attention towards improving energy efficiency strategies. 

 

 

  

 
1 The authors agreed with the utilisation of this paper to compose this thesis through the shared authorship 

agreement presented in Appendix F. 
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Introduction 

 

The need for improving energy efficiency in buildings is urgent. In Brazil, 

buildings were responsible for 43% of the electricity consumption in 2019 (Brazil 

2020). The amount of energy consumed in this sector tends to increase in the following 

years if the status quo is maintained.  

As extreme climate events become more frequent and the overall global 

temperature increases, both the effects of Climate Change and the use of HVAC 

systems in equatorial, tropical and subtropical climates can become health issues 

(ELNAKLAH et al. 2021). Additionally, as HVAC equipment becomes more socially 

inclusive (KIGALI PROJECT, 2019), people of developing countries tend to buy and 

install more of this equipment (MACRAE et al., 2008). 

This is especially true in school buildings in Brazil. Air-conditioning systems 

are responsible for enhancing indoor thermal conditions and increasing the energy use 

intensity (SARAIVA et al., 2019). Geraldi and Ghisi (2020) performed a top-down 

analysis of this type of building across the country, showing that HVAC is not 

frequently installed in all buildings. In fact, it is installed in only about 13.0% of the 

classrooms, 32.7% of the administrative rooms, and 31.9% of the labs of public schools. 

In the same study, the performance of schools with and without air-conditioning 

systems were compared; schools with air-conditioning had an annual EUI 64% higher 

than schools without air-conditioning. 

However, this is not a static situation. Schools tend to buy air-conditioning sets 

over the years, and this gradual implementation will cause an increase in the school 

building stock energy consumption. For example, the EUI of two schools in which air-

conditioning was installed increased from 8.1 to 15.8 kWh/m² and 11.9 kWh/m² to 34.6 

kWh/m² (GERALDI; GHISI, 2020b). Also, as reported in several recent case studies, 

improving air quality through air-conditioning systems is an urgent task and has been 

increasing with the outbreak of the coronavirus pandemic. 

Since the implementation of air-conditioning in public schools in Brazil is a 

large-scale action, this issue can be addressed by a stock-level analysis. Modelling the 

building stock is a useful practice to assess statistical key information of a group of 

buildings (GERALDI; GHISI, 2020a; HAMILTON et al., 2017). Some studies applied 

this approach to assess the energy performance of buildings and find different insights 

for energy efficiency, for example, to improve best practices in the United Kingdom 



188 

 

(HONG et al., 2014), to model buildings relationships at an urban scale (REINHART; 

DAVILA, 2016), and to estimate energy savings potential at national-level 

(BRØGGER; WITTCHEN, 2018). 

An example of a stock level analysis application is the development of energy 

benchmarks, which evaluates the energy efficiency of a building against its pairs 

(WILDE, 2018). Reference buildings (denominated archetypes) are usually adopted to 

represent the main characteristics of typical buildings of the stock to develop 

benchmarks. The archetypes are used to simulate a reference building in various 

conditions that represent the stock reality – i.e., different climate conditions, 

occupations, materials, and others. Benchmarks are obtained through regressive models 

of simulation results, according to variables that are important for the type of building 

(CHUNG, 2011). Advances in benchmarking methods are available in the literature; 

however, they are usually related to high-granularity data, particular focuses or specific 

to their countries or regions (BORGSTEIN; LAMBERTS; HENSEN, 2016). In Brazil, 

a benchmarking approach was developed for bank branches (BORGSTEIN; 

LAMBERTS, 2014) and high-rise buildings (ALVES et al., 2017). Synthesizing the 

building stock into archetypes is a handy approach to predict trends in the energy use of 

similar buildings through computer simulation. 

Therefore, it is pertinent to measure the carbonisation effect due to the 

implementation of air-conditioning systems in Brazilian schools to estimate their impact 

at the stock level. 

The objective of this study was to investigate future energy benchmarks for the 

school building stock in Brazil, considering two scenarios of air-conditioning systems 

implementation in the building stock and future climate data. To do so, comprehensive 

building stock data were analysed and used to model seven building archetypes to 

represent the stock. Those models were simulated considering four cities (that represent 

the types of weather in Brazil) and calibrated using the actual energy consumption of 

the stock. Then, the calibrated models were simulated considering air-conditioning 

implementation in two scenarios: a) administrative and lab environments; b) 

administrative, labs and classrooms. Three reference years were selected: a baseline 

year (compound by an TMYx 2020 database file), and two modified-weather data 

considering IPCC (International Panel for Climate Change) scenario A2 to include 

climate change trends for 2050 and 2080. Electricity consumption for cooling was 

analysed in these combinations. The new aspects adopted in the approach proposed 
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herein comprise the combination of interrelated aspects that might have been treated in 

an isolated manner in previous research. For instance, a comprehensive analysis of the 

built stock in Brazil enabled to achieve realistic archetypes considering local 

characteristics; and the consideration of mixed-mode operation in archetypes. Then, 

exploring future scenarios of the energy performance of the building stock consolidates 

the need for improving whole-building performance also in developing countries. Also, 

despite the application of stringy regionalised data, the method could the adapted for 

other locations. Nevertheless, this study also serves as a report of the carbonisation of 

the stock occurring in developing countries – although the causes are locally 

regionalised, the consequences are global. 

 

Method 

 

Figure 6.1 illustrates the flowchart of the method employed. 

 

 
Figure 6.1 – Flowchart of the method 

 

Modelling the school building stock 

 

In order to build the representative archetype models, a database of 284 

educational buildings was analysed. These buildings were provided by the Educational 



190 

 

Administrative Organism as the buildings under their jurisdiction. They represent 

educational buildings in southern Brazil. However, although they belong to a specific 

region, all public schools in Brazil share similar design guidelines. A well-known 

method to create archetypes was employed (ATTIA et al. 2020). Seven building shapes 

were identified as predominant (Rectangular, H-shape, E-shape, U-shape, O-shape, L-

shape and Multiple buildings). The main characteristics used to outline the building 

stock were: (1) annual energy consumption (kWh/year); (2) gross-floor area (m²); (3) 

number of students (people), and; (4) building shape. Among the buildings analysed, 35 

building designs were assessed, which allowed a detailed investigation in terms of 

materials properties, fenestration details, window-to-wall ratio (WWR) (%), and 

number and layout of rooms, classrooms, aisles, office rooms, bathrooms, kitchen and 

additional spaces. Furthermore, the design analysis also provided information on the 

lighting power density (LPD) and equipment power density (EPD) in every room. Such 

information supported the construction of seven models in EnergyPlus Input File (.idf) 

format, one for each building shape. Average values were adopted from the design 

analysis. The variability of shapes assists the representation of the variability inherent to 

the building stock. OpenStudio® was used to support the modelling process. Table 6.1 

shows the average values of gross-floor area, and the number of classrooms for all 

models and the values adopted equally for all models. Adopting average values for 

building mass and thermal properties may have different outcomes. For building-mass 

aspects, which had a higher variation throughout the models, average values are a good 

proxy for the stock characteristics since they may balance the differences found among 

samples. Additionally, each prototype had its values based on the stock analysis. 

Considering the thermal properties of the facilities, it is worth mentioning that adopting 

average values will not hinder the applicability of results as most buildings share the 

same constructions and materials used. 

 

Table 6.1 – Summary of the archetype’s parameters 

Parameter Unit Value 

Average gross-floor area m² 2,547.0 

Average number of classrooms rooms 14 

Wall thermal transmittance W/m²K 2.13 

Roof thermal transmittance W/m²K 1.77 

Slab thermal transmittance W/m²K 3.30 

Wall thermal capacity kJ/m²K 151 
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Table 6.1 – Summary of the archetype’s parameters. (continuation). 

Parameter Unit Value 

Roof thermal capacity kJ/m²K 230 

Glazing U-value W/m²K 5.70 

Glazing Solar Heat Gain Coefficient  - 0.87 

Average wall absorptance - 0.50 

Average roof absorptance - 0.65 

Administrative room WWR % 29.00 

Library/Computer lab WWR % 40.00 

Classrooms WWR % 35.00 

Average LPD W/m² 6.57 

Average EPD W/m² 116.00 

Occupancy in admin. rooms people 10 

Occupancy Library/Computer lab people 10 

Occupancy in classrooms people 25 

 

To ensure that the building models represent the actual stock model, pilot 

simulations were used to compare actual and simulated building performances. Then, a 

calibration step was employed to refine the simulation models using International 

Performance Measure and Verification Protocol guidelines (IPMVP, 2001), considering 

the occupancy schedule during the year in all rooms as the parameters for calibration. 

Small adjustments in this occupancy provided good calibration considering a 

comparison of the simulated EUI with the actual EUI of a set of schools. It is important 

to highlight that the performance gap is a noticeable issue reported in the literature, and 

in this study, we did not intent to accurately replicate the stock’s actual energy 

consumption. Instead, we intended only to approximate the simulated and actual energy 

performances to establish a baseline for comparison – simulation results will be 

compared with themselves. Figure 6.2 presents the distribution of the log EUI for (a) the 

actual building stock analysed and (b) for the calibrated simulated models. Averages 

and standard deviations for actual EUI are presented as well. 
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(a) (b) 

Figure 6.2 – Comparison between (a) actual and (b) simulated EUI of the school 

building stock in Brazil. 

 

The comprehensive description of the stock analysis to obtain the representative 

building models and the discussion regarding the representativeness of the archetypes 

obtained were reported in a research of the Laboratory of Energy Efficiency in 

Buildings (LabEEE/UFSC) in Brazil. The study is currently being developed, and it 

aims to investigate the impact of building shape on the energy consumption and to 

analyse the impact in different Brazilian cities. Figure 6.3 presents the graphical aspect 

of each building model. 

 

 (a) Rectangular 

 

(b) U-shape 

 

(c) E-Shape 

 

(d) L-Shape 

 

(e) H-Shape 

 

(f) O-Shape 

 

(g) Multiple buildings 

Figure 6.3 – Archetype models identified from the stock. 
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Simulation for future scenarios 

 

Three reference years were adopted. The first is a year corresponding to the 

actual scenario (the baseline year). TMYx data files were used from 

ClimateOneBuilding website. Then, IPCC scenario A2 for 2050 and 2080 time-slices 

was used to perform the simulations for future climate. The scenario A2 characterizes 

the medium emission scenario, which preserves local identity and economic 

development, with fragmented and slower introduction of new technologies. The 

“morphing method” (BELCHER et al. 2005) was used as a reference. The morphing 

method is one of the most widespread methods to generate future climate files, as seen 

in previous works (CHAN, 2011; GAGLIA et al., 2017; JENTSCH; BAHAJ; JAMES, 

2008; TROUP; FANNON, 2016). This approach is normally used because it preserves 

the real weather sequences and is specific to a certain location. The tool “Climate 

Change World Weather File Generator for World-Wide Weather Data”, the 

CCWorldWeatherGen (JENTSCH et al., 2013), developed by the University of 

Southampton was applied for this purpose.  

The weather files adopted in this research were determined to represent the four 

main climate zones of Brazil, defined by ASHRAE 169 Standard. Table 6.2 presents the 

locations adopted to represent the climates and correlates the ASHRAE 169 (ASHRAE, 

2013) and the Brazilian climate classification (NBR 15220, 2005) of each location. 

 

Table 6.2 – Weather data adopted and Correlation between ASHRAE 169 and Brazilian 

standard NBR 15220-3. 

Location ASHRAE 169 NBR 15220-3 Description 

Cuiabá 0A ZB 7 Extremely Hot and Humid 

Rio de Janeiro 1A ZB 8 Very Hot and Humid 

São Paulo 2A ZB 3 Hot humid 

Curitiba 3A ZB 1 Warm humid 

 

Figure 6.4 presents the main climatic characteristics (average monthly 

temperature and relative humidity) for the cities used in this study. 
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Figure 6.4 – Temperature and humidity of the cities analysed. 
 

 

As observed in the stock analysis of a previous work (GERALDI; GHISI, 

2020b), air-conditioning systems in schools are mainly installed in administrative 

rooms, computer labs and libraries. Retrofits to install air-conditioning systems in 

classrooms are often observed. When it happens, it is likely that all the classrooms get 

air-conditioning sets. 

In all cases observed in the stock, the preponderant type is mini-split (90%), 

which means that each room has a single unit. This facilitates the implementation by the 

Education department, once they can install, replace or maintain the units individually 

and with no big retrofits. However, the energy efficiency of adopting such an approach 

is debatable. In this study it was adopted the most frequent case observed in the stock: 

each room conditioned separately. The system type was cooling with direct expansion. 

The cooling setpoint was 24°C, and the heating setpoint was 18°C. The average 

coefficient of performance was 3.6 W/W. The setpoints were assumed according to the 

Brazilian Centre of Energy Efficiency in Buildings (CB3E, 2017), which provides 

referenced values for energy simulation of buildings considering the Brazilian context. 

These setpoints are also used in Energy Performance Certification (EPC) in Brazil. 

Then, two scenarios of air-conditioning systems implementation in schools were 

considered:  
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• Scenario A: air-conditioning in administrative rooms, libraries and computer 

rooms, and; 

• Scenario B: air-conditioning in administrative rooms, libraries, computer rooms 

and all the classrooms. 

 

EnergyPlus 9.4 engine was chosen to carry out the computer simulations. The 

use of natural ventilation mixed with air-conditioning is common in Brazil. Then, the 

control of conditioned and naturally ventilated areas was performed using the Energy 

Management System (EMS), which is a script programmed to control diverse building 

systems (ELLIS et al. 2007). Sensors of operative temperature and outside air 

temperature were used to determine the air-conditioning activation or deactivation, 

considering the setpoints of 26°C and 19°C, respectively. Also, occupancy and 

operation sensors determine the use of the system, preventing the system from being 

activated in empty rooms.  

 

Parametric simulation 

 

Finally, four different orientations for each scenario were considered, i.e., each 

model facing North, South, East and West. With the combination of all seven models, 

two scenarios of air-conditioning, four orientations, four locations and three weather 

data (Baseline year, 2025 and 2080), 672 simulations were run. The occupancy 

schedules were considered according to the standard period of functioning of the school 

buildings in Brazil: classes from 8:00 am to 12:00 am and from 1:30 pm to 5:00pm. The 

student year begin in February 15th and finish in December 15th, with a winter-break of 

two weeks in July. Administrative rooms, libraries and labs have the same occupancy. 

Lighting and equipment were considered to be on when there is occupancy in the 

rooms. 

 

Energy performance analysis 

 

The energy performance simulation results were analysed for each weather 

scenario in terms of each building's total EUI. Using the outcomes from the parametric 

simulations, an initial description of the results was performed using boxplot-like 

graphs. Such an approach showed the contrast of both scenarios of air-conditioning 

implementation according to the current climates and their corresponding projections 
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influenced by climate change trends. Besides that, a general overview of the results 

shows the expected average of EUI for each year tested, as well as standard deviations 

for each scenario. 

 

Results and discussions 

 

The results of the parametric simulations are synthesized in Figure 6.5. The 

boxplots provide information on each city evaluated (Cuiabá, Rio de Janeiro, São Paulo, 

and Curitiba) according to both scenarios of air-conditioning implementation and 

projections of climate change. 

Figure 6.5 shows the important role that local weather plays on the average 

energy use of the building stock. For instance, even considering the worst-case 

combination (scenario B in 2080), the energy consumption of schools in Curitiba 

(below 40 kWh/m²/year) are likely to be lower than those currently observed in Cuiabá 

if all the classrooms were air-conditioned (generally above the 40 kWh/m²/year 

threshold). 

Such information emphasizes that building stakeholders in large countries like 

Brazil, which has different climates, should be aware of their current decisions’ 

implications on the future. Indeed, an important takeaway from this study is that one 

trend does not fit all the realities in Brazil. Different regions are likely to be impacted 

by climate changes in varying intensities. Along these lines, the hottest city evaluated, 

Cuiabá, is likely to require a massive amount of energy to keep the indoor conditions of 

public schools in comfortable ranges in the future. The median EUI for this city is 63.4 

kWh/m²/year, while no school has reached the threshold of 60.0 kWh/m²/year in the 

other cities. As the state governments are responsible for maintaining such schools, 

national decision-making should be oriented to guarantee that students across the 

country will have access to acceptable learning environments. 
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Figure 6.5 – Energy use intensity for Brazilian schools according to different 

projections of climate. 

 

A general overview of the stock EUI is shown in Figure 6.6. It comprises both 

scenarios of air-conditioning implementation in the school stock. The averages of EUI 

are highlighted. First, it is important to stress that besides most Brazilian schools that do 

not have air-conditioning yet, the simulations also included scenario B for the reference 

year for comparison purpose.  
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This approach aimed to show a tendency from the baseline year up to 2050, as 

there is no specific timeline for such a massive air-conditioning implementation across 

the country. Additionally, a dashed line linking the average for scenario A in the 

baseline year and the average of scenario B in 2050 is an alternative estimate for 

continuous air-conditioning implementation throughout these years. 

 

 

Figure 6.6 – Average and standard deviations of energy consumption in Brazilian 

schools 

 

It is evident that if the current condition of schools is maintained (Scenario A), 

there will be an increase in the energy use of the school stock of about 6% in 2050 and 

31% in 2080. Considering the implementation of Scenario B in the buildings today 

(baseline year), there will be an increase of 88% on the average EUI (from 16.75 to 

31.56 kWh/m²/year). Of course, this is a theoretical scenario since it is very unlikely 

that all schools get air-conditioning today. Thus, a projection from Scenario A in 

baseline year to Scenario B in 2050 is shown in Figure 6.6. 

Considering the actual scenario without air-conditioning in classrooms (average 

16.75 kWh/m²/year), if such systems are implemented up to 2050 – which is probable –, 

the average increases to 33.94 kWh/m²/year, i.e. a growth of 103%. And this tends to be 

even higher in 2080 (45.27 kWh/m²/year), resulting in an increase of 170% compared to 

the baseline year. Of course, this outcome is expected if the status quo is maintained, 
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which means installing poor-efficient air-conditioning systems with no upgrade of the 

building envelope. 

Additionally, scenario B also showed higher standard deviations on the average 

EUI of schools and an increasing tendency for further years. For instance, the lower 

limit (average minus the standard deviation) for scenario B in 2080 is greater than the 

upper limit (average plus the standard deviation) for scenario A in the same year: 31.06 

kWh/m²/year and 29.59 kWh/m²/year, respectively.  

It is important to highlight the implications of the approach used in this study. 

Since it is based on stock modelling, there is an uncertainty inherent of the process of 

simplification that comprehends simulation models. Indeed, standard deviations were 

maintained to show that the results might vary. Sensitivity analysis performed in other 

studies (Silva and Ghisi 2014) showed that occupancy schedules, equipment power, and 

occupants are relevant parameters in energy simulation in general. Thus, a sensitivity 

analysis could reveal the major aspects that impact stock modelling and energy 

benchmarking.  

Another key point evidenced in Silva and Ghisi (2014) is the possibility of 

relying on simulation-based results to strategically plan future steps towards 

decarbonisation (and prevent carbonisation) of the local building stock. Indeed, by 

combining emerging topics from the literature (stock modelling, energy benchmarking, 

building performance simulation and climate change), a solid overview of the 

implications may be captured to aid a country-sized planning building intervention. 

These outcomes do not support the idea of avoiding the air-conditioning 

implementation or even installing them only in colder climates to minimize such an 

increase in energy use. Instead, students’ performance may be negatively affected by 

suboptimal indoor conditions (PALACIOS et al. 2020). In fact, this study sheds light on 

the need to assess the impacts of current decisions on the future comprehensively. 

Achieving decarbonisation target in buildings is a complex demand, which involves 

different stakeholders (HAMILTON et al., 2017). Therefore, our results support that 

building designers, researchers, school principals, and policy-makers must be aligned to 

achieve comfortable yet energy-efficient and climate-change-resilient learning 

environments in Brazil. 

Naturally, achieving such ambitious targets demand high efforts. However, if 

authorities do not consider this issue from now on, both problems (global warming and 

thermal comfort) will contribute to aggravate each other. Indeed, without a resilient, 



200 

 

energy-efficient transition in Brazilian schools, those buildings will worsen climate 

change effects with their associated high amount of carbon emissions. As a 

consequence, the same buildings will be likely to use even more energy to operate. 

From a building designers’ perspective, our results support the need to include 

energy efficiency measures on new buildings constructed throughout the years. As 

highlighted in the method section, the envelope of current schools in Brazil is not 

provided with materials able to minimize the energy use (see Table 5.1). Previous 

research conducted in Brazil emphasized the major role of incorporating energy 

efficiency measures to reduce the effect of climate change in the coming decades 

(Triana et al. 2018). Indeed, preparing the envelopes to such trends on climate change is 

necessary. 

Researchers are also expected to continuously provide new information to other 

stakeholders about good practices in this field. For instance, understanding acceptable 

indoor conditions is a key aspect to tailor the building operation to guarantee higher 

satisfaction and productivity for the students without compromising those buildings' 

energy performance. Along these lines, there is evidence that thermal comfort in 

classrooms in Brazil is highly influenced by airspeed, which provides an opportunity to 

avoid air-conditioning overuse by relying upon natural ventilation (BUONOCORE et 

al., 2018). 

As a consequence, both school principals and policy-makers can define their 

practices according to the best strategies. Policy-makers can implement strict 

requirements on the minimal performance of systems installed and the properties of new 

buildings. In Brazil, energy labelling of buildings is still voluntary, and the transition to 

a mandatory requirement would facilitate the achievement of an energy-efficient stock 

in the future. 

 

Conclusion 

 

This paper has shown a study on the EUI of the school building stock in Brazil 

considering two scenarios of air-conditioning implementation and two scenarios of 

future climate. The objective was to measure the impact of the implementation of air-

conditioning that is occurring in those types of buildings in Brazil, with no other 

interventions to decrease energy consumption – which causes carbonisation of the 

building stock. The main conclusions can be outlined as follows: 
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a. Considering the scenario of implementing air-conditioning in classrooms 

(Scenario B) in the baseline year, the average EUI of the school building 

stock in Brazil might increase about 88%. 

b. If the trend to install air-conditioning without any other energy efficiency 

measures is kept, the energy consumption tends to increase more 8% in 

2050 and 43% in 2080. 

c. To reduce energy consumption in schools and continually provide thermal 

comfort to students and employees, stakeholders must include energy 

efficiency programmes for buildings once the actual buildings’ conditions 

are not prepared to integrate air-conditioning systems. 

The detailed reasons for the findings above will be investigated in future studies, 

for example, specific strategies of energy efficiency and photovoltaic panels 

implementation to mitigate this carbonisation effect. 
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7. Discussions 

 

The Brazilian electricity matrix is currently based on renewable energy sources 

(around 84.8%) when compared to the average world generation matrix (23.0%)(EPE, 

2021). This implies in a low carbon emission rate (1.9 tCO2eq/person) in comparison to 

developed countries (carbon emission rate in the USA is 15.0 tCO2eq/person) (EPE, 

2021), but there is still a concern regarding the increasing energy demand in buildings. 

The overview of the current school building stock in Brazil presented in 

Chapter 3 revealed that most school buildings need better thermal conditions. A 

significant share of the analysed schools (78%) does not have air-conditioning in 

classrooms, and 39% do not have air-conditioning at all. Other studies report that 

Brazilian schools lack adequate thermal comfort to students (SARAIVA et al., 2019). 

Since retrofits to improve passive thermal comfort strategies (such as envelope 

upgrades) are not common in such typology, there is a trend to install air-conditioning 

sets. The study of Chung (2020) reported that a very similar phenomenon occurred in 

China (schools received a massive implementation of HVAC) and caused an increase of 

22% in the EUI from 2003 (86 kWh/m².year) to 2017 (105 kWh/m².year) (CHUNG; 

YEUNG, 2021). Thus, it is reasonable to assume that the lack of air-conditioning is an 

energy poverty issue. 

Energy poverty is demonstrated by the lack of environmental quality due to the 

scarcity of financial resources to implement systems that provide adequate thermal 

comfort (PALMA; GOUVEIA; SIMÕES, 2019). For example, in South Africa, a study 

compared two different schools, i.e. one in a high-income neighbourhood and another in 

a low-income neighbourhood. Although the schools were located in the same city (same 

climatic conditions), the high-income school had a very high EUI and electricity 

consumption due to cooling in addition to lighting and equipment; while the low-

income school had a very low EUI and energy consumption mainly due to lighting 

(SAMUELS; GROBBELAAR; BOOYSEN, 2020). 

Chapter 3 also explored the variables related to the building energy 

performance, and the impact of each variable on the EUI was accounted for. The survey 

used for data collection shown in Chapter 3 is available in Appendix B. The correlation 

of all variables of the building stock with their corresponding EUI was performed using 

statistical analysis, non-parametric methods (Kruskal-Wallis and pair-wise Wilcoxon 

tests) and Likert-like scales related to environmental satisfaction of occupants. When a 
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variable caused a considerable variation on the EUI, it is possible to conclude that such 

a variable is relevant for the EUI. The analysis showed that the number of students, the 

number of air-conditioning units, the operation shift, and the number of classrooms 

(related to the floor-plan area) were relevant, together with the climatic zone. Another 

pertinent result was that the building manager (in the case of the schools: the principal) 

is not responsible for the energy bills, and 75% often do not know how much energy is 

consumed in the building. However, the statistical test did not show a difference of 

EUIs between schools where the principal knows the energy bill cost from schools 

where the principal does not.  

A benchmarking model that does not take into account the quality of the indoor 

environment is not a model that shows the proper performance of a building. However, 

including subjective variables such as environmental satisfaction in benchmarking 

models can be challenging. Chapter 4 presented a proposition of a Machine Learning 

method to mitigate this gap. A Bayesian Network was constructed to predict a 

subjective benchmark (a level of efficiency, varying from A to E) of the whole-building 

performance.  

While the analysis presented in Chapter 3 achieved the relevant variables of the 

building stock regarding energy consumption, those relevant variables were employed 

in the Bayesian Network. The relationship among variables was calculated through a 

probabilistic approach using the Bayes Theorem, which results in a degree of truth and 

not in an individual and final result. This means that the classification of the 

performance of a building is presented in probabilities instead of deterministic terms. 

Since this method is based on evidence, it shows more properly what happens in the real 

world. The variables used to model the Bayesian Network were: the floor-plan area, 

climatic zone, number of students, type and number of air-conditioning units, operation 

shifts, and thermal satisfaction in the classrooms. The dataset obtained in Chapter 3 was 

split in two sets: one for training and another one for testing. The training dataset was 

used to calculate the conditional probabilities among variables of the Bayesian 

Network, and the testing dataset was used to calculate the network’s performance. The 

Bayesian Network was chosen for such an aim because it is widely used in health 

science, especially for diagnosing diseases, because it is strong to solve “if-then” 

problems.  

A challenging step in this process of proposing the top-down method was the 

discretisation of the continuous variables. The variables floor-plan area, number of 
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students, number of air-conditioning sets, and EUI needed categorisation because they 

were continuous ones and the model requires categorised data. There are several 

methods for this practice, but there is no consensus in the literature regarding this topic 

– actually, it depends on the variable and the purpose of the discretisation. Therefore, 

one tested three methods in an exploring paper (GERALDI; BAVARESCO; GHISI, 

2019). Since the aim of that paper was different from the aim of this thesis, such a paper 

was not included in the core of this thesis. Instead, it is shown in Appendix C. In that 

paper, it was found that the Equal Width Discretisation (EWD) method was the best to 

discretise the variables in the dataset in order to provide better Bayesian Network 

performance. Then, one used EWD to discretise the total dataset to build the Bayesian 

Network shown in Chapter 4. 

The Bayesian Network presented a high performance when compared to similar 

Machine Learning methods developed in other studies. The accuracy of 76.53% found 

by our Bayesian Network was similar to studies that used Bayesian Network for 

different purposes, for example, Dongmei et al. (2018) (accuracy of 71% to 85%), 

Amayri et al. (2019) (accuracy of 84%), and Barthelmes et al. (2017) (accuracy from 

93% to 98%). An important result of this method was that by employing a classification 

model such as Bayesian Network, it was possible to classify in different categories 

buildings with similar EUIs but distinct thermal satisfaction of occupants. In other 

words, both EUI and thermal satisfaction of occupants were considered in the 

benchmarking (alongside with other factors). The model was sensitive to all input 

variables, and none of them alone played a decisive part. 

A tailored benchmarking method is important to allow subjective assessment in 

the evaluation process. In this sense, the method might take into account other 

phenomena that impact operational energy usage besides building features and climatic 

data. For example, how did the pandemic of COVID-19 affect building energy usage? 

The Brazilian National Energy Report of 2021 informed that the pandemic in 2020 

caused a reduction of around 1.0% of the total electricity consumption compared to 

2019. Commercial and public sectors experienced a reduction of, respectively, 10.4% 

and 7.3% in 2020 compared to 2019, while the residential sector faced a growth of 5.8% 

(EPE, 2021). 

Regarding the Brazilian school building stock, the specific analysis of the 

impact of the lockdown measures was not carried out because the data used in this 

thesis was pre-COVID. Since, the pandemic is still an ongoing challenge, post-COVID 
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investigation might take time. However, a partial analysis of the first (and more 

restrictive) lockdown measures in Florianópolis showed that the municipal schools had 

an average 50% reduction in energy consumption (GERALDI et al., 2021). Since 

school buildings were supposedly unoccupied, why was this reduction not 100%? The 

same study showed that this was due to essential loads that keep the building operating 

even though it is unoccupied – in a “ready-to-operate” mode. This residual energy 

consumption was defined as basal EUI, an analogy to the basal metabolic rate in human 

bodies: the minimum energy consumed by the organism to maintain the body alive 

without activity. The basal EUI comprises lights that remain turned on for safety, 

refrigerators and freezers, residual safety system loads, stand-by loads, and emergency 

systems. Each typology might have other essential loads, for example, health centres or 

hospitals will include stand-by loads for some specific equipment. 

Therefore, a building with no modifications on its envelope and under the same 

weather conditions will have changes in its EUI only caused by the interaction of the 

occupants with the buildings’ systems. Since “Buildings don’t use energy: people do” 

(JANDA, 2011), the occupant behaviour was included as a primary factor that 

contributes to energy consumption (YAN et al., 2017). Thus, by correlating the energy 

consumption and a key performance indicator (KPI) for occupants, in terms of some 

subjective aspects (such as environmental comfort or productivity), it is possible to 

outline four assumptions that compose this interface: 

 

(I) Inactivity: It is the condition in which there is no performance of the 

building (there are no occupants), but yet there is energy consumption to 

maintain the building “read-to-operate”. It goes from zero consumption 

to the basal EUI; 

(II) Under-consumption: It is the condition in which occupants are not 

comfortable or might be more productive considering the current 

building systems usage. This means the HVAC systems or lighting, for 

example, have to be activated to provide adequate environmental quality. 

If there is no HVAC system, there is a need for implementation. If 

HVAC systems and comfort are not adequate, the HVAC needs to be 

turned on or adjusted. It goes from the basal EUI up to the optimal state; 

(III) Optimal: It is the condition around the best performance of comfort or 

productivity that the building could provide to occupants considering 
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only upgrades of their systems. In this case, the energy is used 

adequately to provide satisfactory indoor environmental quality to 

occupants; 

(IV) Over-consumption: It is the condition in which the occupants are not in 

the comfort zone, i.e. the HVAC is too hot or too cold, or a lighting 

system is causing glare. It goes from the optimal region towards the 

maximum energy consumption possible. 

 

These four schematic assumptions show that within the optimal region lies the 

best practice possible for these given buildings. Therefore, it is with this best practice 

that the performance of a building has to be compared, which makes it the most suitable 

benchmark possible, because it is specifically tailored for the given building. Figure 7.1 

shows a theoretical diagram of the four regions concept for the specific-building 

operational benchmarking. 

 

 

Figure 7.1 – Theoretical concept of the specific building operational performance 

evaluation. 

 

The attainment of this diagram and the reference benchmark for an actual 

building might be challenging. The definition of a single KPI for the building 

performance was explored in the literature (ZHAO et al., 2019), but it is debatable 

(CHEN et al., 2020). However, a single KPI that summarises all subjective aspects of 

the interface between occupants and the building is hard to obtain for a simple 
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assessment (MCARTHUR; POWELL, 2020). Certification processes, such as LEED, 

can incorporate human aspects to obtain a single rating (JIANG et al., 2020), but these 

processes are exceptions, not the rule for a large-building stock. The method proposed 

in Chapter 4 could provide such KPI once it is a method that integrates subjective 

aspects and building features. However, there is room for discussion about this subject. 

Experimental analysis might be conducted to respond to such a riddle. 

Since the schema presented in Figure 7.1 deals with subjective variables, it 

needs experimental analysis to collect evidence from the occupants. Further 

investigations can be outlined in a large sample to allow a high-resolution schema 

detailing. In this thesis, such an analysis was not carried out because the lockdown 

measures of the COVID-19 pandemic made impossible the in-situ data collection. The 

work initially proposed would be to collect information in the schools to improve the 

model’s resolution in Chapter 4. A comfort survey and a high-resolution energy 

consumption monitoring (in a resolution of seconds) would be conducted. However, the 

suspension of school activities demanded a changing of plans. 

Hence, although the top-down approach worked adequately to benchmark the 

whole-building performance considering the subjective aspects from occupants, this 

approach is limited to the dataset used. A generalisation model is more suitable to 

benchmark buildings considering standard (typical) conditions. Then, a bottom-up 

method using archetypes plays an important role because it emulates standard 

conditions for a given typology. 

Along these lines, there is an evident need for a building stock model based on 

archetypes. Such models allow the creation of benchmarks to adequately study trends 

and analyse impacts of unseen scenarios on buildings and allow specific studies of 

strategies for interventions.  

Obviously, the archetypes that represent the building stock need to be 

constructed based on actual data. However, the current methods found in literature 

always employed some archetypes’ parameters based on actual data of the stock, but 

others based on values obtained in standards. Still, those parameters based on actual 

data are often based on averages of the stock and might not represent the whole 

distribution data. More advanced techniques to compose archetypes were found in 

literature, such as performance-based clustering processes to obtain reference buildings 

(SCHAEFER; GHISI, 2016) and segmentation criteria for whole-building index (ALI et 

al., 2019). However, the representation of archetypes’ parameters is still limited to 
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single values, and there is no accounting for the amount of information in the building 

stock dataset. Therefore, the framework proposed in Chapter 5 aimed to bridge this gap. 

A reducing-uncertainty framework to obtain a bottom-up energy benchmarking model 

using Artificial Neural Networks (ANN) was proposed. The framework combines 

Information Theory through entropy and cluster analysis to determine the archetype 

parameters used to model an ANN as the benchmarking tool.  

Three energy audits were carried out in schools in Florianópolis. Energy audits are 

in-deep analyses that aim to understand a specific building context related to energy 

usage and propose energy efficiency measures. ASHRAE defines three energy audits 

types: 

● Level 1 (Walk-through survey): a brief visit to the building to recommend 

straightforward energy efficiency measures (EEMs); 

● Level 2 (Energy survey and analysis): a survey conducted to raise equipment 

and systems, including operation and maintenance. The EEMs recommended 

included cost analysis; 

● Level 3 (Detailed analysis of capital-intensive modifications): It is a level 2 

including an equipment monitoring and more detailed site inspection. Energy 

simulation can be used to find economic-engineering analysis. It is the most 

detailed approach and holds the higher the level of confidence. 

 

In this study, a proper energy audit protocol was developed. It is shown in 

Appendix D. This protocol is an enhancement of ASHRAE level 2, and it is suitable for 

non-complex and non-domestic buildings. The energy audit was important in this 

process to raise in-situ information and find detailed energy consumption data. The 

reports of the energy audits are presented in Appendix E, and they were used in Chapter 

5 to compose the model and validate it. 

Also, a data collection step was carried out through the analysis of the drawings 

of 31 schools. From the drawings’ analysis it was possible to characterise the school 

building considering construction detail information, such as the thickness of the walls, 

type and size of roof, absorptance (colour) of the walls, type of floors, window-to-wall 

ratio for each type of room, among others. 

The dataset of the Brazilian building stock was used to demonstrate the method 

application; however, the framework is not restricted to the data obtained in this study. 
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By adopting actual (and assertive) values on the archetypes’ parameters, one can 

achieve a representative model of the building stock. The main innovation relies on the 

formulation of this framework: the schematic data-driven method was created to reduce 

uncertainty in modelling archetypes for energy benchmarking of buildings. Moreover, 

the study innovatively reported the analysis of an actual building stock benchmarking 

evaluation on a large scale in Brazil. The method application demonstrated that the 

Brazilian school building stock tended to inefficiency, and a specific case study pointed 

out that inefficient equipment might cause such an inefficiency. 

It is important to clarify that the tendency to inefficiency is related to the actual 

condition of the schools – not that the energy consumption is high. Actually, by 

comparing the average EUI of the school building stock in Brazil (19.29 kWh/m².year), 

one can see that this is a very low EUI compared to other countries. The more similar 

EUIs reported by the cross-country benchmarking of Pereira et al. (2014) were 

86 kWh/m².year in Italy and 63 kWh/m².year in Cyprus. However, by comparing it with 

South Africa (10 to 24 kWh/m².year), it is possible to understand that the average EUI 

is within a developing country range (SAMUELS; GROBBELAAR; BOOYSEN, 

2020). As reported by Samuels et al. (2020), even though there is an evident social 

inequality issue in South Africa, reported by the authors, the public schools in South 

Africa lack adequate IEQ as well. Thus, one emphasises the energy poverty question 

raised above: does the Brazilian average energy consumption decrease due to efficiency 

or the lack of adequate IEQ? Clearly, the results found in thesis leads to the latter. 

Although the actual EUI was very low, the benchmarking determined a tendency 

to inefficiency because the method calculated a reference EUI considering the 

conditions of the schools. For example, for a given school which the main end-uses are 

for lighting and equipment (without HVAC), the model will predict a benchmark 

without HVAC as well, because it is unfair to compare the actual EUI with a standard 

condition considering HVAC. Consequently, if the actual EUI is higher than the 

benchmark predicted by the model, lighting or equipment is inefficient. 

In fact, a case study showed that inefficient equipment, such as old refrigerators, 

was the cause of inefficiency in that school. By comparing the end-uses obtained 

through the energy audit and the end-uses estimated by the benchmarking model, it was 

possible to achieve what makes the school inefficient. The energy consumption with 

equipment was 75.8% higher than the benchmark, while the energy consumption for 

cooling was 31.4% lower. Energy consumption with lighting was very similar. This 
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analysis was inspired by a similar study performed in literature for residential buildings, 

which concluded that estimations predicted by benchmarking models are as suitable as 

energy audits to predict energy end-uses (HSU, 2014). 

A comprehensive building stock model proposed in Chapter 5 supports not only 

the prospection of inefficiency but also the testing of scenarios of unseen events such as 

the performance of the stock under future climatic scenarios or the implementation of 

strategies on a large scale. 

In the final core part of this thesis, Chapter 6 presents the application of the 

building stock model presented in Chapter 5 to emulate two situations: the 

implementation of HVAC in the school building stock in Brazil and the performance of 

such a stock considering the future climatic data. Two scenarios of HVAC 

implementation were analysed: one considering HVAC only in administrative rooms, 

library and computer labs, and the other considering HVAC in administrative rooms, 

library, computer labs and all classrooms. As for the climatic data, the weather data of 

2019 (TMYx format) was used for four cities (Cuiabá, Rio de Janeiro, São Paulo and 

Curitiba), representing the four ASHRAE climatic zones for Brazil. Then, the 2019 

weather data was adapted using the morphing method to generate weather for 2050 and 

2080 according to the IPCC scenario A2. Results of this study showed an important 

prediction: the average EUI of the school building stock would increase around 88% 

today if there was a massive HVAC implementation. If the status quo is maintained – 

i.e. the same implementation of HVAC systems with no consideration of retrofit actions 

– the EUI will increase from the current 16.75 kWh/m².year to 45.27 kWh/m².year, an 

increase of 170%. It is important to state that the dataset used in the analysis of Chapter 

5 was slightly small than the dataset used in Chapter 4 (because of the size of the article 

for a conference, only four cities were chosen for Chapter 5 instead of the eight adopted 

in Chapter 4). Then, the average EUI of both papers (Chapter 4 and 5) was slightly 

different. This result is supported by the evidence obtained in Chapter 3, which revealed 

that schools with HVAC had a EUI 60% higher than schools with no HVAC. 

These outcomes do not encourage avoiding the air-conditioning implementation 

to diminish such growth in energy use. Instead, occupants’ satisfaction might be 

negatively affected by poor indoor conditions (PALACIOS et al., 2020; VAN DEN 

BOGERD et al., 2020). It is important to assess the impacts of current decisions on the 

future carefully. Accomplishing the decarbonisation target in the buildings sector is a 

complex demand, which involves different stakeholders (HAMILTON et al., 2017). 
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Therefore, building designers, researchers, school principals, and policy-makers must 

be consonant in order to achieve comfortable, energy-efficient, and climate-change-

resilient learning environments in Brazil. 

As a final remark on this Chapter, one discusses the validity of the energy 

benchmarking application. In this thesis, two stock modelling methods were proposed: a 

top-down and a bottom-up method. The top-down method was an energy 

epidemiological solution based on evidence to model statistical relationships and 

provide a single performance scale. This method is suitable to include occupants’ 

aspects in buildings operational performance evaluation. On the other hand, the bottom-

up method started from the building stock dataset to model archetypes; artificial 

intelligence was used to generalise the benchmark prediction. This method is adequate 

to rate the building performance under standard conditions. As a result, both aspects are 

important to be considered differently because they measure different metrics and solve 

different problems. Thus, both methods are useful and valid, but they perform different 

evaluations. 
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8. Conclusions 

 

The objective of this thesis was to develop methods to obtain representative 

building stock models to benchmark the energy performance of Brazilian schools 

considering building-level and stock-level perspectives. An energy epidemiological 

study was conducted to assess the distribution (frequency and patterns) and determinant 

factors of energy consumption in the school building stock in Brazil. 

Five articles constitute the core of this thesis. The first article showed a literature 

review in which the main gaps of researches were identified. The second article showed 

information of the school building stock and a statistical analysis of the main features 

regarding energy consumption. The third article proposed a top-down modelling based 

on the data presented in the second article in order to propose an integrative 

benchmarking model considering subjective aspects (satisfaction with built 

environment) for benchmarking. The fourth article proposed a bottom-up modelling 

framework based on reducing the uncertainty of archetypes and the construction of an 

ANN to generalise the building performance evaluation. The fifth article reported a 

practical application of the stock model constructed in the fourth article to measure how 

the building stock will respond under future conditions considering climate change 

effects and large-scale HVAC implementations.  

Each article addressed conclusions regarding their detailed application and their 

individual topics while sharing the encompassing problem of this thesis. The main 

contributions of this work are both theoretical and application-oriented, which drives 

the research to the following key conclusions: 

• The current state of art evidenced two main perspectives: building-level 

and stock-level analysis of operational building performance.  Building-

level analysis employed higher resolution of data than stock-level 

analysis. Also, one concluded that building performance analysis 

benefits from the consideration of the climate, urban, and social context, 

encouraging researchers to specify the boundary condition adopted in the 

study; 

• An energy epidemiological analysis was carried out showing that the 

determinant factors that impact the EUI in the school building stock in 

Brazil were the number of students, floor-plan area, operation time, and 

HVAC system specifications (type and quantity). Obviously, the climate 
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conditions where the building is placed impacts the energy consumption 

when there is HVAC in the building. Other factors such as thermal 

satisfaction and the need for improvements played an important role but 

were not decisive. The awareness of the schools’ principal regarding the 

energy consumption and satisfaction with other aspects of the IEQ (such 

as acoustic satisfaction and lighting satisfaction) were not relevant for 

the EUI. Moreover, the survey responses showed that the schools in 

Brazil have poor IEQ, and occupants reported an urgent need for HVAC. 

Thus, the apparent low EUI of the stock (if compared to other countries) 

is an energy poverty issue due to the need for better thermal performance 

in those buildings; 

• The consideration of subjective aspects is important to allow a fair 

benchmarking, especially on a country-size scale. A probabilistic model 

was proposed to integrate both qualitative and quantitative variables of 

the building stock to perform such an evaluation. The Bayesian Network 

provided good results; 

• The method used to enhance the archetype composition (evaluating the 

entropy and defining clusters) provided a high-performance stock model 

to emulate the stock conditions. This manipulable stock model supported 

the analysis of unseen scenarios for the population of buildings, such as 

strategies for energy efficiency and building performance under future 

climates; 

• The method proposed to develop bottom-up building stock model was 

successfully applied in a case study considering future scenarios of 

climatic data and interventions of HVAC installation. If the status quo is 

maintained (intensification of HVAC implementation and aggravation of 

climate change effects), the Brazilian school building stock will 

experience an increase of 88% in their average EUI by 2050 and 170% 

by 2080. Therefore, actions must be taken to provide a more conscious 

transition to a comfortable and energy-efficient school building stock in 

Brazil. 
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8.1. Limitations 

 

Limitations were also addressed in each individual article and they can be 

summarised as follows: 

• Only data of 2018 was used for the conducted analysis. As pointed out in 

the literature review, the benchmarking throughout the years is a 

question still open. The data collection process (through survey and 

design analysis) might imply in some loss of data due to the different 

databases. Also, the voluntary nature of the survey application 

disregarded some states of the country due to absence of responses. 

Moreover, the questionnaires were applied to a key person – which limits 

the perception of the data to the respondent person. Thus, an 

investigation of the actual environmental comfort conditions of each 

individual occupant was not considered because it is timing and money 

consuming; 

• The top-down model is highly dependent on the dataset. As the building 

stock changes, the Bayesian Network results might change. Then, 

continuous collection of data and updating of the BN are needed. 

• Regarding archetype modelling, the process is still dependent on the 

analyst. The modelling of subspace geometries needs subjective 

evaluations. Moreover, the framework neglects the modelling of 

surroundings. 

 

8.2. Further research 

 

Further investigations and follow-up research are outlined as follows: 

 

• For further works, one suggests an expansion of this research, including 

the missing states. A suggestion is to apply the same questionnaire used 

herein (or other well-known approach), in order to obtain yearly 

systematic responses from occupants. By expanding the research scope, 

one could also include other dimensions of the environmental comfort, 

such as lighting and acoustic satisfaction – which play an important role 
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in occupant experience in the building, but were disregarded in this 

research because they were secondary in relation to the thermal 

satisfaction; 

• Although the collected data in this study was comprehensive, there is 

room for enhancement by collecting high-granularity data. This step was 

planned to be performed, but it was cancelled due to the COVID-19 

pandemic. A high granularity of energy consumption data in a sample of 

school buildings could enlighten specific energy-consumption drivers 

and allow deep correlations with occupants’ satisfaction. For example: 

time and setpoints to operate HVAC systems, lighting usage pattern, 

schedules of equipment operation, among others; 

• It is possible to improve the method of archetype modelling by including 

parametric design in the massing model. Since the geometric parameters 

are variables, it is possible to systematise the process by linking the 

inventory proposed with an algorithm that automatically reads, analyses, 

and models the archetype. This is achievable using current parametric 

design tools, such as Grasshopper and Rhinoceros; 

• Further research can be conducted to reproduce the data-driven models 

considering multi-year evidence. This analysis might reveal a direction 

of the building performance of the stock towards efficiency, inefficiency, 

or stability. 

 

Therefore, the study of the building performance at the stock-level is a key 

knowledge to improve energy performance and enhance indoor environmental quality at 

the building-level. This thesis strengthens the state of the art of building stock 

modelling worldwide by proposing stock-level evidence-based techniques to assess 

building-level energy performance.  

Exploring the energy performance of a population of buildings sheds light on the 

individual building’s insights, supporting the understanding of energy usage in practice. 

Thus, only a representative building stock model sustains a reliable and collective 

analysis of strategies to reduce energy consumption and provide actions to move 

towards a more sustainable world. 
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Appendix A – First appendix to Chapter 3 

 

This appendix presents a literature review table that is part of the article shown in 

Chapter 3.  

 

Table A.1 – Summary of the selected previous works that addressed energy 

performance of school building stock. 
Authors Year Country Contribution Reference 

IEA EBC 

Annex 15 

(Various 

authors) 

1996 Various 

Established a set of guidelines for the construction 

of school buildings in order to achieve a certain 

level of energy efficiency considering Heating, 

Ventilation and Air-Conditioning (HVAC) and 

water heating, insulation of the envelope, and 

window-to-wall ratio. 

(IEA, 1996) 

Hong et al. 2013 UK 

Established a top-down approach to benchmark 

the school building stock using a broad 

perspective. Used ANN for benchmarking, 

adopting the building characteristics as inputs and 

the benchmarks of electric energy and heating 

energy demand as outputs. Conclusions pointed 

out that this approach is useful to compare 

building among pairs. 

(HONG et al., 

2014) 

Burman et 

al. 
2014 UK 

Established a bottom-up approach to benchmark 

the school building stock including end-use 

analysis. Authors proposed an intrinsic method to 

evaluate a building by comparing it with itself, 

using past performance as a baseline. A post-

occupancy evaluation was applied in four school 

buildings for two years. The authors identified 

specific building characteristics by considering the 

social context, mapping operations issues and 

establishing the baseline. A very detailed 

simulation model was developed to analyse the 

energy performance and to propose energy 

conservation measures. 

(BURMAN et 

al., 2014) 

De Santoli et 

al. 
2014 Italy 

By analysing the existent stock, it was possible to 

predict a reduction of around 20% by combining 

floor plan and material improvements. 

(DE 

SANTOLI et 

al., 2014) 

Pereira et al. 2014 
Portugal 

and Italy 

Established a functional multiple-country 

benchmarking, summarised the main 

characteristics of the school building stock and 

concluded that indoor environmental conditions 

must be considered in benchmarking. 

Additionally, benchmarking must consider energy 

bill information in large-scale analysis. 

(PEREIRA et 

al., 2014) 

Herrando et 

al. 
2016 Spain 

Found an average difference of 30% between 

measured and predicted consumption at stock 

level. This difference is mainly caused by the 

unrealistic consideration of the user behaviour and 

difficulties in simulating some types of loads. 

(HERRANDO 

et al., 2016) 

Salleh et al. 2016 Malasya 
Applied questionnaires to measure the perception 

of the users regarding energy efficiency 

(SALLEH; 

KANDAR; 

SAKIP, 2016) 

Ouf, Issa 2017 Canada 

Level of study and age of the building had a 

significant impact on energy performance. New 

buildings showed a lower performance. 

(OUF; ISSA, 

2017) 
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Table A.1 – Summary of the selected previous works that addressed energy 

performance of school building stock (continuation). 
Authors Year Country Contribution Reference 

Lizana et al. 2018 Spain 

A new energy assessment method using supporting 

decision-making process towards low-carbon energy 

schools was proposed. The method included the 

minimization of the input data according to the 

specific characteristics of schools.  

(LIZANA 

et al., 

2018) 

Burman et 

al. 
2018 UK 

Five high-efficient school buildings presented higher 

CO2 emissions regarding operational performance 

than the median of the same typology stock. The 

performance gap is pointed as a possible cause: the 

buildings have been designed but are operated in a 

different way. Thus, it is important to address post-

occupancy evaluations and measurement and 

verification of performance in-use. Also, the study 

suggests a holistic approach, assessing energy, 

environmental quality, and educational performance 

in order to potential conflicts between energy 

efficiency measures and indoor environmental quality 

(IEQ). 

(BURMA

N; 

KIMPIAN; 

MUMOVI

C, 2018) 

Vivian et al. 2018 UK 

Experiment study of using passive ventilation 

systems (PVHR) in classrooms in order to reduce 

energy consumption with heating. This study 

addressed parameters such as Air permeability and 

air infiltration and concluded that airtightness 

significantly affects the performance of the PVHR as 

well as the human behaviour interactions (such as 

window opening). 

(VIVIAN 

et al., 

2018) 

Saraiva et al. 2019 Brazil 

The study established a comparison between comfort 

indicators between schools in two different regions in 

Brazil. It was demonstrated that a specific 

methodology to assess sustainability school buildings 

is required for each region of Brazil. 

(SARAIV

A et al., 

2019) 

Wang 2019 Taiwan 

A broad panorama regarding the final energy 

consumption in senior and junior high and 

elementary schools in Taiwan was presented using 

measure EUI and energy consumption per student. A 

major conclusion point to the higher consumption for 

private schools than public schools. 

(WANG, 

2019) 

Kim et al. 2019 
South 

Korea 

A summary of the schools’ energy usage and their 

construction aspects in South Korea was presented. 

The main energy performance indicators were 

assessed, such as the EUI and the energy 

consumption in function of the number of students. 

Thus, it was suggested to estimate the school size 

considering the population density. 

(KIM et 

al., 2019) 

Attiaa et al. 2020 Belgian 

The study used stock data to develop two benchmark 

models of NZEB schools, based on EUI rated by 

floor-plan area. Models were validated using four-

year dataset of energy consumption monitoring. 

(ATTIA; 

SHADMA

NFAR; 

RICCI, 

2020) 

Barbosa et 

al. 
2020 Portugal 

Assessed the thermal discomfort in public schools in 

free-running conditions. The experimental work used 

a prototype of a real school in order to evaluate 

thermal discomfort, energy consumption prototype 

before and after refurbishment, considering heating 

strategies (winter and midseason analysis). 

(BARBOS

A; DE 

FREITAS; 

ALMEIDA

, 2020) 
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Appendix B – Second appendix to Chapter 3 

 

This appendix presents the questionnaire that is part of the article shown in Chapter 3. 

This questionnaire composes the form for data collecting of this thesis. 

Table B.1 – Questionnaire used in the research. 

Questions Type of question 

Basic data:   

1. School Name Open-ended 

2. School code Open-ended 

3. City Open-ended 

4. State Open-ended 

5. Phone number Open-ended 

6. Operating hours (Options: Morning, afternoon and night) 
Multiple choice (more 

than one is allowed) 

7. Year of construction Open-ended 

8. Floor plan area (in m²) Open-ended 

About the Facility:   

10. Which of those facilities the school have? (Options: Gymnasium, Sport 

Court, Cafeteria, Snack Bar, Library, Computer Lab, Auditorium, Swimming 

Pool, Kitchen, Other). 

Multiple choice 

11. How many classrooms the school have? Open-ended 

12. How many refrigerators and freezers the school have? Open-ended 

13. Are there fans in the school? (Options: Yes, in most of the classrooms; Yes, 

in least than half of the classrooms; No) 
Multiple choice 

14. Are there curtains in the school? (Options: Yes, in most of the classrooms; 

Yes, in least than half of the classrooms; No) 
Multiple choice 

15. Generally, when the light bulbs are turned on? (Options: Only during the 

night; Only during the day; During both night and day) 
Multiple choice 

16. In general, what are the type of the lights? (Options: LED light bulb; 

Fluorescent light bulb; Fluorescent Tub; Incandescent light bulb) 
Multiple choice 

18. Are there air-conditioning in the classrooms? (Options: Yes, in most of the 

them; Yes, in least than half of the them; No)  
Multiple choice 

18. Are there air-conditioning in the office rooms? (Options: Yes, in most of 

the them; Yes, in least than half of the them; No)  
Multiple choice 

18. Are there air-conditioning in the library and labs? (Options: Yes, in most of 

the them; Yes, in least than half of the them; No)  
Multiple choice 

19. In total, how many air-conditioning units the school have? Open-ended 

20. In general, when the air-conditioning units are often used? (Options: 

February/March; April/May; June/July/August; September/October; 

November/December) 

Multiple choice (more 

than one is allowed) 

20. In general, when the fans are often used? (Options: February/March; 

April/May; June/July/August; September/October; November/December) 

Multiple choice (more 

than one is allowed) 

21. What are the types of air-conditioning units the school have? (Options: 

Split-type; Window-type; Central-type; None) 
Multiple choice 

22. In average, how often the air-conditioning units got maintenance actions? 

(Options: Less than one time each 2 year; One time each 2-year; One time each 

year; More than one time each year; never; I don't know) 

Multiple choice 

About the energy use:   

23. Do you know how much the monthly energy consumption of this school is? Yes / No 

24. In your perception, how much the air-conditioning usage impacts on 

school's energy bill? 
Likert scale 
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Table B.1 – Questionnaire used in the research (continuation). 

Questions Type of question 

24. In your perception, how much the fans usage impacts on school's energy 

bill? 
Likert scale 

24. In your perception, how much the lighting system usage impacts on 

school's energy bill? 
Likert scale 

24. In your perception, how much the computer's usage impacts on school's 

energy bill? 
Likert scale 

25. Does the school motivate the employees to save energy? Yes / No 

26. What do you think about approaching the energy efficiency with the 

students? 
Likert scale 

About the indoor environmental satisfaction:   

27. In your perspective as principal, do the students/teachers are satisfied with 

the indoor temperature in February/March? 
Likert scale 

27. In your perspective as principal, do the students/teachers are satisfied with 

the indoor temperature in April/May? 
Likert scale 

27. In your perspective as principal, do the students/teachers are satisfied with 

the indoor temperature in June/July/August? 
Likert scale 

27. In your perspective as principal, do the students/teachers are satisfied with 

the indoor temperature in September/October? 
Likert scale 

27. In your perspective as principal, do the students/teachers are satisfied with 

the indoor temperature in November/December? 
Likert scale 

28. In your perspective as principal, do the students/teachers are satisfied with 

the lighting in the classrooms? 
Likert scale 

28. In your perspective as principal, do the students/teachers are satisfied with 

the external noises in the classrooms? 
Likert scale 

28. In your perspective as principal, do the students/teachers are satisfied with 

the airflow in the classrooms? 
Likert scale 

28. In your perspective as principal, do the users are satisfied with the lighting 

in the office rooms? 
Likert scale 

28. In your perspective as principal, do the users are satisfied with the external 

noises in the office rooms? 
Likert scale 

28. In your perspective as principal, do the users are satisfied with the airflow 

in the office rooms? 
Likert scale 

29. In your perspective as principal, there is any improvement to increase the 

environmental satisfaction with the temperature? (Options: Yes, a major 

retrofit; Yes, a medium retrofit; Yes, a minor retrofit; No) 

Multiple choice 

29. In your perspective as principal, there is any improvement to increase the 

environmental satisfaction with the lighting? (Options: Yes, a major retrofit; 

Yes, a medium retrofit; Yes, a minor retrofit; No) 

Multiple choice 

29. In your perspective as principal, there is any improvement to increase the 

environmental satisfaction with the airflow? (Options: Yes, a major retrofit; 

Yes, a medium retrofit; Yes, a minor retrofit; No) 

Multiple choice 

29. In your perspective as principal, there is any improvement to increase the 

environmental satisfaction with the acoustic? (Options: Yes, a major retrofit; 

Yes, a medium retrofit; Yes, a minor retrofit; No) 

Multiple choice 

30. Do the air-conditioning units need improvements? (Options: Need 

Installation; Need maintenance; Already have enough and works well; There is 

no need) 

Multiple choice 

30. Do the fans need improvements? (Options: Need Installation; Need 

maintenance; Already have enough and works well; There is no need) 
Multiple choice 

30. Do the curtains need improvements? (Options: Need Installation; Need 

maintenance; Already have enough and works well; There is no need) 
Multiple choice 

30. Do the lighting systems need improvements? (Options: Need Installation; 

Need maintenance; Already have enough and works well; There is no need) 
Multiple choice 

31. How much do you think that this improvement would cost? Likert scale 

32. Fell free to tell more about the needs of the school Open-ended 
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Table B.1 – Questionnaire used in the research (continuation, end). 

Questions Type of question 

33. In general, how much do you think that the actual conditions of the lighting 

system impact on the students' learning skill? 
Likert scale 

33. In general, how much do you think that the actual conditions of the natural 

lighting impact on the students' learning skill? 
Likert scale 

33. In general, how much do you think that the actual conditions of the acoustic 

impact on the students' learning skill? 
Likert scale 

33. In general, how much do you think that the actual conditions of the natural 

airflow impact on the students' learning skill? 
Likert scale 

33. In general, how much do you think that the actual conditions of the 

temperature impact on the students' learning skill? 
Likert scale 

34. Feel free to complement the previous question or to share your experience. Open-ended 

34. Do you want to share anything else? Open-ended 
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Appendix C – First appendix to Chapter 7 

 

This appendix presents the article published in the Building Simulation 2019 

conference. This article was developed during the thesis and it was used as a 

complementary study to construct the Bayesian Network model presented in Chapter 4, 

and discussed in Chapter 7. The reference of the paper is: 

 

GERALDI, M. S.; BAVARESCO, M. V.; GHISI, E. Bayesian Network for Predicting 

Energy Consumption in Schools in Florianópolis – Brazil. Proceedings of the 16th 

IBPSA Conference Rome, Italy, p. 4188–4195, 2019. doi: 

https://doi.org/10.26868/25222708.2019.210484. 
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Abstract 

It is important to study innovative 

approaches that consider real-world data to 

predict energy consumption, especially in 

existing buildings. This paper presents a data-

driven model to predict energy consumption 

using Bayesian Networks. Monthly energy 

bills over three years were obtained from 90 

public schools in Florianópolis, southern 

Brazil. Information such as floor-plan area, 

number of students, type of education, number 

of floors and occurrence of events were 

gathered for each building. The network output 

indicator was assessed using Energy Use 

Intensity based on floor-plan area or number of 

students. Three types of discretization methods 

and three network structures were tested, 

generating eighteen networks. A performance 

analysis comparing predicted as well as real 

Energy Use Intensity determined the 

Normalized Root Mean Square Error for each 

network and pointed out Equal Width 

Discretization as the best method and Naïve-

Bayes as the most advantageous structure type. 

The discretization method had a high impact on 

the network performance. In addition, the 

Energy Use Intensity based on floor-plan area 

was more reliable than that based on the 

number of students. 

Introduction 

Predicting energy consumption is 

important for public buildings once it yields 

better resource management and improves 

optimization and retrofits. In Brazil, buildings 

were responsible for 43% of the total energy 

demand in 2017 (Brazil, 2017). 

For new buildings, the energy 

consumption is commonly predicted using 

computer simulation or simplified models. 

However, predicting energy consumption for 

actual buildings lacks dependable methods 

along with challenges to be addressed, such as 

the non-availability of measured data and the 

unwillingness to share existing data (Borgstein 

and Lamberts, 2014). Thus, a statistical 

approach can be helpful to overcome those 

difficulties and obtain a representative result. 

Computer simulations and statistical 

approaches are complementary techniques. 

Building simulation using software (e.g., 

EnergyPlus) is useful for forward modelling at 

the building design phase and data-driven 
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modelling is useful for retrofits, building 

performance analysis and energy purchasing in 

smart grids (Kontokosta and Tull, 2017). 

Moreover, authors have emphasized the gap 

between simulation results and actual 

performance (Jones et al., 2015; Khoury et al., 

2017; Menezes et al., 2012), and this fact leads 

researchers to look for new ways to predict 

energy consumption by calibrating forward 

models or using data-driven modelling 

(Tardioli et al., 2015; Wei et al., 2018). An 

evident need to forecasting energy 

consumption based on real data is expressed by 

recent studies, especially for existing buildings 

(Hamilton et al., 2015, 2016; Huebner et al., 

2015; Huebner et al., 2016; Staepels et al., 

2013).  

Statistical approaches can be used to 

create data-driven models using information 

from the building stock. Usually, data-driven 

approaches are used to calculate baselines for 

measurement and verification proceedings 

(e.g., retrofits) (Burman et al., 2014; IPMVP, 

2001). Human variables can also be taken into 

account to improve the accuracy of such data-

driven models by considering user’s behaviour 

(Liang et al., 2016). 

Wei et al. (2018) categorized data-

driven approaches in two major classes: to 

predict building energy consumption (using 

artificial neural networks, support vector 

machines, statistical regression, decision tree 

and genetic algorithm); or to classify building 

energy consumption (using k-mean clustering, 

self-organizing map and hierarchy clustering). 

For example, using a data-driven 

approach, Lindelöf et al. (2018) developed a 

model to reduce the cost of retrofitting by 

estimating the baseline period through a 

Bayesian verification (no specific monitoring 

period was needed). In addition, the result was 

expressed by probability density function, 

which gives a confidence interval and not a 

static value. This confidence interval, rather 

than a blind result, supports the stakeholder to 

decide about the most suitable retrofit. 

The Bayes theorem introduces the 

conditional probability, which is a powerful 

approach to face complex and interactive 

problems, such as energy consumption, due to 

its capacity to express results in a degree of 

uncertainty (Borunda et al., 2016). Bayesian 

Networks are acyclic graphical models used to 

assess inferences regarding the relationship 

between input and output variables, represented 

as nodes. This technique has been used for 

many purposes, such as calibrating simulation 

models (Heo et al., 2011; Heo et al., 2012), 

defining architypes for stock modelling 

(Menberg et al., 2017; Sokol et al., 2017) and 

evaluating resources operation and application 

(Borunda et al., 2016). 

To forecast energy consumption, 

Bassamzadeh and Ghanem (2017) proposed a 

Bayesian Network to predict the demand for 

purchasing energy in Smart Grids based on 

high resolution data (5 min). The aim was to 
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investigate the dependent relations between 

contributing variables and to build a model to 

help managers to buy the right amount of 

energy using high-granularity data. The main 

variables used were past demand, outside 

temperature, weekday or weekend day and 

price of energy. O’Neill and O’Neill (2016) 

proposed a Bayesian Network for forecasting 

hot water energy consumption in an office 

building. The model was based on an hourly 

dataset of outside temperature and energy 

demand collected during the cold season. The 

Network was very dependent on the 

discretization process and the uncertainty had 

increased when predicting consumption in 

other seasons. 

However, both proposed frameworks 

required a high level of data resolution and 

lacked to predict consumption when the 

building was not monitored with smart meters. 

In developing countries as Brazil, buildings 

with monthly energy measurement (billing) are 

the majority and there is a need to develop 

models to consider this portion of the stock. In 

addition, despite the high applicability of the 

Bayesian Network to predict energy demand in 

buildings, there is a lack of a tool for 

forecasting electric energy use intensity (EUI), 

since it has been used to estimate HVAC 

demands in cold locations. The objective of 

this work is to introduce a data-driven model 

using Bayesian Network to predict electric 

energy use intensity in public schools based on 

monthly data. The model was constructed 

using billed data from 90 state schools in 

Florianópolis, southern Brazil. The method 

presents the step-by-step construction of the 

Bayesian Network and registers how the nodes, 

data classifications and node connections were 

settled to obtain an optimal network 

performance. 

Method 

The study is comprised of three steps: 

dataset characterization and discretization 

process, Bayesian Network construction, and 

performance analysis. Figure C.1 shows the 

method flow chart. 

 

Figure C.1 – Method flow chart 

Dataset characterization 

The first step was to collect and to 

characterize the dataset. Data from 118 schools 

were obtained and each school was 

characterized by including information such as 

monthly energy bills from 2016 to 2018, floor-

plan area (in m²), number of students, type of 

education (basic, high or both). The presence 

or not of significant events was also identified 

for each monthly bill in order to indicate if the 

school had a situation, such as a party or 

science fair, which impacts on the energy 

consumption. The data collection process was 

based on the Energy Star® Portfolio 
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Management worksheet for schools K-12 

(EPA, 2016). 

A first exploratory analysis cleaned the 

dataset aiming to exclude missing data, 

removing outliers and correcting inconsistent 

data. Some inconsistent data that should be 

avoided (such as hotwire power supply) could 

lead to an unreliable modelling. This process 

included the comparison of the average and the 

standard deviation of the annual electricity 

consumption. Schools with average annual 

consumption differences greater than 50% and 

schools with monthly peaks greater than two 

standard deviations of the annual consumption 

were excluded. The result of this step was the 

dataset ready to be used for discretizing. 

The EUI was obtained for each school 

in two ways: rating the monthly consumption 

by floor-plan area and by number of students. 

Despite the relationship between the 

consumption and the building characteristics, a 

Bayesian Network was proposed because it is 

not possible to predict energy consumption 

using a directly linear model. Figure C.2 shows 

electricity consumption versus floor-plan area 

and number of students and evidences that a 

linear model will be very unreliable. 

 
(a)   (b) 

Figure C.2 – Monthly energy consumption versus (a) 

floor-plan area and (b) number of students. 

Discretization process 

Values of an attribute are either discrete 

or continuous. The conditional probability of 

an attribute Xi that will take a particular state xi, 

when the value of the class C that conditions Xi 

is c can be described as Equation C.1. 

 

 P(Xi = xi | C = c)  (C.1) 

 

Where Xi is an attribute of the variable 

X; xi is a given state of the attribute; C is a 

class of the attribute; and c is an adopted value 

for class C. 

Attribute value c for the class C is 

considered a discrete value with a finite range. 

When the class C has a continuous attribute 

range, it is necessary to group them into classes 

to calculate a probability function. Even for 

attributes that have a discretized but large 

amount of values, it is often advisable to group 

ranges of values into a smaller range for the 

purpose of estimating the probabilities. So, it is 

needed to discretize the continuous variables to 

allow the calculation of the probabilities. 

Some of the variables gathered were 

continuous and needed discretization, but some 

variables were discrete. Table C.1 shows a 

summary of the variables used to construct the 

Bayesian Network. 

Table C.1 – Summary of the variables 

Variable 
Variable 

type 

Node 

number 

Node 

type 

Nº of 

Classes 

EUI Continuous 1 Output 5 

Area Continuous 2 Input 3 

Students Continuous 3 Input 3 
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Table C.1: Summary of the variables (Continuation). 

Variable 
Variable 

type 

Node 

number 

Node 

type 

Nº of 

Classes 

Floors 

Discrete  

(One or 

Two) 

4 Input 2 

Education 

Discrete  

(Class 1, 2 

or 3) 

5 Input 3 

Month 
Discrete  

(12 months) 
6 Input 12 

Event 
Discrete  

(Yes or No) 
7 Input 2 

To categorize the continuous variables, 

three discretization methods were used aiming 

the best network performance. Three methods 

were tested because, as concluded by O’Neill 

and O’Neill (2016), the discretization criteria 

have a high impact on the network output. The 

discretization methods were chosen according 

to Yang and Webb (2002) due the nature and 

amount of data available in this work. 

The first discretization approach was 

EWD (Equal Width Discretization). This 

method divides the number of observations into 

k intervals of equal width, where k corresponds 

to the number of classes. The interval width is 

given by Equation C.2. 

 

 DEWD = (vmax – vmin)/k  (C.2) 

 

Where: DEWD is the intervals width; vmax is the 

maximum observed value; vmin is the minimum 

observed value; and k is the number of 

intervals. 

The cut points start in vmin and continue 

by summing DEWD until vmax. 

The second discretization approach was 

the EFD (Equal Frequency Discretization). 

This method divides the dataset into k intervals 

where each one contains approximately the 

same number of training cases (equal 

frequency). k is a predefined factor equal to the 

number of classes. 

Both EWD and EFD methods possibly 

jeopardize attribute information since k is 

determined by an assumption and without 

considering the dataset properties. However, 

both methods are often used and work 

surprisingly well for Naïve-Bayes classifiers 

(Yang and Webb, 2002). To explore that 

limitation, the final discretization approach was 

the PKID (Proportional k-Interval 

Discretization) which discretizes the dataset 

into k intervals with s size. PKID adjusts 

discretization because it considers the 

relationship between interval size and number 

of intervals. The higher the number of 

intervals, the smaller the interval size. 

Consequently, the larger the interval size (the 

smaller the number of intervals), the lower the 

variance but the higher the bias. The opposite 

is true. PKID gives equal weight to 

discretization bias and variance decrease by 

setting both interval size and interval number 

equally and proportionally to the dataset size, 

as presented in Equation C.3. 

 

 s = t = (n)1/2 (C.3) 

 

Where s is the interval size; k is the 

number of intervals; and n is the dataset size.  
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The result of this step was a table with 

all variables classified according to the three 

discretization criteria adopted. 

Bayesian Network construction 

The construction of the Bayesian 

Network was based on the Bayesian Theory 

and the calculation of conditional probabilities 

as shown in Equation C.4. 

 

 P(A|B) = P(B|A).P(A)/P(B)   (C.4) 

 

where P(A|B) is the probability a posteriori of 

the event A, conditioned by the event B; 

P(B|A) is the probability a posteriori of the 

event B that conditions an event A; P(A) is the 

probability a priori of the event A; and P(B) is 

the probability a priori of the event B.  

The probabilities a priori were based on 

their own variable distribution and the 

probabilities a posteriori was calculated as a 

function of the conditioning event. The nodes 

represent the attributes of the observations, i.e., 

the variables gathered in the dataset. Node 

classes represent the variable states. The 

connections among the nodes are called 

directed arc of probability and express the 

likelihood that the arrow-headed node 

conditions the arrow-ended node. The structure 

of the network depends on the arrangement of 

those arcs among the nodes. 

Those probabilities were assessed by 

calculating the frequency of occurrence for 

each variable state related to the variable state 

of the connected node using a frequency table. 

Table C.2 shows the questions asked whose 

response values complete the frequency table 

for two generic nodes. 

Table C.2 – Analytical composition of a generic 

frequency table of two nodes with two classes. 

Node A 
Node B 

Class 1 Class 2 

Class 1 

How many 

observations had 

Node A classified as 

Class 1 and Node B 

classified as Class 1? 

How many 

observations had 

Node A classified as 

Class 1 and Node B 

classified as Class 2? 

Class 2 

How many 

observations had 

Node A classified as 

Class 2 and Node B 

classified as Class 1? 

How many 

observations had 

Node A classified as 

Class 2 and Node B 

classified as Class 2? 

Three structures of Bayesian Network 

were tested. The most basic one was Naïve 

Bayes, wherein the input nodes were settled by 

a direct arc to the output node. The Tree 

Augmented Naïve-Bayes type (TAN) was 

similar to Naïve Bayes, but arcs among input 

nodes were used. The Net Bayes type combines 

the arcs among input nodes and the use of 

latent nodes – nodes not directly connected to 

the output node. Usually, latent nodes are used 

to represent non-observational variables. 

Figure C.3 presents a graphical example of 

those three types of structure. 

 

Figure C.3 – Differences among Bayesian Network 

structures. 

Therefore, three types of networks were 

developed each one combining three different 
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discretization approaches for continuous 

variables, resulting in nine networks. 

To use the network, one must settle the 

class in all input nodes regarding to its school 

information according to the intervals defined 

in the discretization. The output node was the 

energy use intensity, and, despite this node was 

denoted by a discrete node, the output is a 

continuum value because the Bayesian 

Network can be used as a predictor by 

multiplying the output probabilities of each 

output class by their average value. The 

predicted energy use intensity can be estimated 

by means of Equation C.5. 

 EUI = Σ(pi x ai)  (C.5) 

 

Where EUI is the predicted energy use 

intensity (output of the Bayesian network); pi is 

the probability outputted for each class; and ai 

is the average value of energy intensity for 

each interval class of the EUI node. 

The standard deviation of the predicted 

energy use intensity was also calculated, using 

the same mathematical structure of Equation 5 

but considering the standard deviation instead 

of the average value of each interval class of 

the EUI node. Considering a distribution of 

Student, the final predicted EUI value was 

shown with a confidence interval, i.e., 

predicted EUI + or –confidence interval. In the 

first attempts, the total consumption was used 

as output node, but it was found that using EUI 

as output node the network achieved more 

reliable results. 

Two types of EUI were used to test the 

network performance. The first EUI was based 

on the rate between energy consumption per 

month and floor-plan area, used by many 

authors to measure performance (Chung 2011). 

The second was based on energy consumption 

per month and number of students, as 

suggested by Dias Pereira et al. (2014) to 

assess performance of school buildings.  

Performance analysis 

The performance analysis measured the 

capacity of each network to predict reliable 

results. 

A dataset containing known-output 

values (real values) were inputted in the 

network and the outputs predicted by the 

network were compared to those already 

acknowledged. This process was performed 

using a bootstrap routine which resamples the 

dataset that was used to train the network.  

A first analysis compared the predicted 

output values with the known-output values by 

verifying if the known-output values were 

fitted inside the confidence interval outputted 

by the network. If so, the network was 

considered able to predict monthly EUI, 

considering the confidence interval. This 

analysis compared the correct and the non-

correct results grouping them in a bar chart. 

To determine the network that had the 

best performance, a numerical approach was 

used. To assess the performance, the NRMSE 

(Normalized Root Mean Square Error) was 
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adopted as an indicator, which can be 

calculated according to Equation C.6. 

 

 NRMSE = 100 x [Σ(y’t-yt)]1/2/(ymax - ymin) (C.6) 

 

Where NRMSE is the Normalized Root Mean 

Square Error (indicator of performance); y’t is 

the predicted EUI (network output) 

corresponding to the case t; yt is the real EUI 

corresponding to the case t; t is the number of 

cases; ymax is the maximum value of real EUI; 

and ymin is the minimum value of real EUI. 

In summary, the square difference of 

the predicted output energy use intensity and 

the real energy use intensity was computed for 

each case of the bootstrapping sample, divided 

by the number of cases in the sample and then 

the square root was taken. Then, the indicator 

was normalized to exclude the influence of the 

scale on the result. This indicator expresses a 

reliable network performance measure because 

it gives the idea of the potential global fitness 

(Hyndman and Koehler, 2006). Thus, the lower 

the NRMSE the stronger the network for 

predicting energy intensity. 

The NRMSE was calculated using the 

bootstrapping for each network combination, 

i.e, three discretization methods times three 

structures equals nine networks. Since two EUI 

indicators were used as output node, the 

NRMSE was calculated for the networks that 

use EUI as a function of floor-plan area and as 

a function of number of students, totalizing 

eighteen networks. 

A final performance analysis used the 

best network selected from the previous 

analysis (smaller NRMSE) to predict the EUI 

over a year for a sample of schools (monthly). 

This result was compared to the real EUI to 

evidence the Bayesian Network behaviour in 

practice. 

Results 

The Bayesian Network  

Eighteen Bayesian Networks were built. 

An example of a Naïve Bayes Network is 

shown in Figure C.4. Each square represents a 

node, and their classes are displayed by bars 

with the probabilities a priori. Those 

probabilities a priori were calculated using the 

dataset to train the network. The trained 

network can be used to insert a case by setting 

the states on classes of each node according to 

the classes of the case analysed. 

Then, the output node gives the 

predicted EUI by calculating the probabilities a 

posteriori multiplied by the average values of 

the classes of the output node. 

The NRMSE was calculated for each 

combination of discretization method and 

structure types used to build the networks. The 

networks were identified by means of an id 

number, followed by the discretization method 

and followed by the structure. 
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Figure C.4 – Bayesian Network. 

A first analysis compared a resampled 

dataset with real output values with those 

predicted by the network. If the real value was 

within the confidence interval, the result was 

considered a correct prediction; otherwise, it 

was considered an incorrect prediction. Figure 

C.5 shows the result of this analysis. 

 

Figure C.5 – Correct and incorrect predictions. 

The variation in results due to using 

different structures was very low. The major 

variation was due to the utilization of different 

discretization methods.  

The discretization method that led to 

the best result – higher correct predictions – 

was the EWD. Both EFD and PKID methods 

led to higher inaccuracy predictions. This could 

be explained because both EFD and PKID 

methods considered low variance among bins, 

what does not represent the dataset. 

In this analysis, it was not possible to 

define which output node was the best (EUI 

rated by floor-plan area or by number of 

students). 

Performance analysis 

To compare the representation capacity 

of the output node two indicators were used: 

EUI based on kWh/m².month and EUI based 

on kWh/student.month. Figures C.6 shows the 

NRMSE for the networks 1 to 9, which used 

kWh/m².month, and Figure C.7 shows the 

NRMSE for the networks 10 to 18 which used  

kWh/student.month. The NRMSE analysis 

assessed the numerical difference between the 

predicted and the real values. So, it was an 

analysis with more accuracy. 

 

Figure C.6 – NRMSE for energy use intensity based on 

floor-plan area (kWh/m².month). 

 

Figure C.7 – NRMSE for energy use intensity based on 

number of students (kWh/student.month). 
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Assessing the NRMSE, the best 

discretization method was the EWD. This is 

due to the nature of the continuum variables 

that are best categorized using a simple binning 

method that led to more representative bins. 

Indeed, the data showed that same-sized bins 

(as created by EFD and PKID methods) do not 

represent the actual data behaviour observed in 

the dataset. For example, for the variable EUI, 

the majority of the data (90%) ranged from 0.3 

to 6.0 kWh/m².month, while 10% ranged from 

6.0 to 16.0 kWh/m².month. For the nodes 

“Area” and “Students”, the trend is more 

linear. 

This could be explained because school 

buildings in general have a very constant 

pattern of consumption despite a few outlier 

values as observed. In addition, PKID method 

cuts the dataset into a lot of bins, what might 

make the network performance decrease due to 

the increase of the bias. This method leads to a 

better performance for small datasets (Yang 

and Webb, 2002), so it did not fit well on this 

dataset. 

The best structure method was the 

Naïve-Bayes which was also the simplest one 

used. This could be explained because there 

was no conditional relation among the 

variables used to describe the consumption. 

Despite the attempts to link the nodes and 

create statistical relations, a more effective 

statistical test must be performed to find real 

relationships among the input variables. 

Comparing the output unit used, either 

relative to the floor-plan area or to the number 

of students, the best network performance 

(lower NRMSE) was observed using the EUI 

rated by floor-plan area.  

This could be explained because the 

appliances used in schools in Brazil are usually 

HVAC for cooling, lights and computers for 

employees, as observed in situ. This makes the 

consumption somehow independent from the 

number of students and more dependent from 

the size of the school. For example, if the lights 

and HVAC were turned on in a classroom, they 

would consume very similar energy either for 

ten or thirty students. 

In fact, if one takes the EUI rating by 

floor-plan area or number of students, it is 

possible to observe the differences, as shown in 

Figure C.8. 

  

(a) (b) 

Figure C.8 – Histogram of EUI rated in relation to (a) 

floor-plan area and (b) number of students. 

The kurtosis of the histogram (a) was 

0.9 and for the histogram (b) was 14.0, which 

indicates that the peak of the frequency-

distribution curve of (b) was sharper than (a). 

In other words, the histogram of EUI rated by 

floor-plan area presented more similarity to the 

normal distribution if compared to EUI rated 
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by number of students. Despite the 

impossibility to determine a cause-effect model 

as shown in Figure C.2, the relationship 

between energy consumption and floor-plan 

area was very strong, since the observations 

were more equally distributed among the bins. 

To analyse the network usage in 

practice, each one of the 90 schools were 

inserted in the network to predict their EUI 

throughout the year. The best performance 

network structure combination was used: 

Naïve-Bayes constructed with EWD that 

outputs EUI rated by floor-plan area (network 

#1). Figure C.9 shows the real and predicted 

EUI for a single school as example. 

 

Figure C.9 – Real vs predicted EUI for a single school 

throughout the year (real data over 2016). 

In general, the predicted values 

overlapped on real values, but this case was 

chosen to illustrate some interesting 

observations, such as noted in other cases. 

From Figure C.9 one can observe that 

the predicted values were very similar to the 

real values despite some outlier points as in 

March, June and August. In March and August, 

there were indications of some peak 

consumptions, probably due to the educational 

schedule variation from one year to another 

(sometimes school year starts in February and 

sometimes in March, depending on holidays, 

and returns from winter break either in July or 

in August). Since the dataset used was 

composed of three years, an improvement in 

the network could be made by using larger 

dataset, contemplating several years. 

In June, the energy usage was lower 

than the predicted also probably due to the 

schedule variation (holidays in June) or 

because most of the schools had events in June 

that are not common on that school. 

In fact, the network was a more stable 

predictor, i.e, the predicting throughout the 

year followed a steady trending but not 

accomplished peaks or outlier values. This is 

also concluded by other authors (Borunda et 

al., 2016; Sokol et al., 2017), who 

recommended the Bayesian Network as a 

robust technique for classification, but not so 

robust to be used in regression analysis, as 

predicting energy consumption requires. 

Another possible explanation for these 

inaccuracies can be found in a limitation of the 

network: the incapacity of differentiation year 

to year. The network always predicts for an 

undefined year and it is not possible to predict 

for 2019 or 2020 differently, for example. 

However, the purpose behind the Bayesian 

Network is retro-feeding, i.e., the possibility of 

inserting new information successively. 

Therefore, while more information is added to 

the network more possibilities to predict 
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specific events can be built. Some examples of 

improvement are the addition of specific 

information as weather data (e.g., average 

monthly temperature), or rearrangement of the 

network structure due to newly found 

relationships. 

Conclusion 

This paper presented a Bayesian 

Network constructed to predict energy 

consumption in schools in Brazil. The database 

of 90 schools was used. This study analysed 

the performance of eighteen networks built 

using different structures and discretization 

methods. This study addresses the noteworthy 

findings as follows:  

(a) The type of discretization method 

expressively impacted on the network 

performance, and the EWD was the most 

suitable method for discretizing the continuum 

variables considered in the network 

construction of this study; 

(b) EUI rated by floor-plan area led to 

better predictions instead of EUI rated by 

number of students due to the relationship 

between appliances and building sizes found in 

schools;  

(c) The network with the best 

performance could lead to a proper accuracy, 

but it failed to predict peak values or to 

distinguish one year from another; 

(d) Some limitations of this method 

could be drawn, such as the need of a greater 

dataset and the incapacity to predict peak or 

outlier values. However, if the limitations are 

solved, the Bayesian Network will be useful in 

contexts where there is limited information 

available, such as developing countries like 

Brazil. 

The detailed reasons for the 

aforementioned findings will be investigated in 

future studies. For example, the improvement 

of the database with more characteristics and 

enlargement of the actual data. Furthermore, 

the use of Bayesian Networks for classifying 

energy performance instead of predicting 

energy consumption would be explored. 
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Appendix D – Protocol for energy audit in low-complex buildings 

 

Introduction and context 

 

Energy audit is a useful strategy to study the energy usage of buildings. It allows 

to identify opportunities for improving the energy performance, reducing their energy 

consumption and enhancing environmental comfort for occupants (WILDE, 2018). 

Energy audits are a procedure to measure the energy used in a building according to 

their systems, aiming to propose strategies for energy efficiency (GERALDI; GHISI, 

2020a). 

Obtaining the energy consumption breakdown – i.e. identifying the energy 

consumed according to each end use – enables the deep understanding of the building 

operation; hence, it supports the straightforward analysis of technical and economic 

strategies according to the specific building needs. Energy audits are standardised by the 

ISO 50002/2014 (ISO, 2014), which provides general guidelines. However, this 

standard does not provide any specific calculation method of energy breakdown or 

energy analysis.  In summary, the ISO explains the steps for energy audit process, 

dividing into: planning; opening meeting, data collecting, measurement plan, 

conducting the site visit, analysis, energy audit reporting, closing meeting. Thumann et 

al. (2013) classify the energy audits in four types (Table D.1). 

 

Table D.1 – Energy audits classification according to Thumann et al. (2013).  

Level Name Description 

Type 0  
Benchmark 

Audit 

Preliminary analysis of energy usage and bills. Determination of the 

benchmark indicators, e.g., Energy Use Intensity (EUI). The audit 

determines whether the future investments produce significant energy 

savings. 

Type I 

Walk-

Through 

Audit 

Basic evaluation of the target building. Utility bills are analysed and 

an inspection through the building is conducted to identify and to 

examine the actual systems. Simple recommendations are indicated 

to the occupants. 

Type II 
Standard 

Audit 

Deep evaluation of the systems and equipment in the building to 

quantify the energy use and losses. It can include site measurements, 

mid-term monitoring and recommendations for energy savings. 

Type III 
Computer 

Simulation 

A digital model of the building based on actual data is developed. 

The computer simulation includes more details of the energy usage 

and the climate conditions. The aim of the simulation is to obtain a 

baseline to compare simulated and actual building performance. It 

allows scenario evaluation for advanced strategies. This analysis 

demands more effort but it provides accurate and high-resolution 

outcomes. 
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The American Society of Heating, Refrigerating and Air-Conditioning Engineers 

(ASHRAE, 2011) provides an orientation for energy audits and classify them into: 

● Level 1 (Walk-through Survey): a brief visit to the building analysed is carried 

out to recommend basic energy efficiency measures (EEMs) to potential savings 

for the facility. It is the most basic assessment of a building’s performance and 

similar to Type I described previously. 

● Level 2 (Energy Survey and Analysis): this type of survey leads to deeper 

recommendations of EEMs, including operation and maintenance procedures 

and cost analysis. The operator will be able to choose modifications to reach his 

cost-effectiveness expectations. 

● Level 3 (Detailed Analysis of Capital-intensive Modifications): it can include 

equipment monitoring and more detailed site inspection. Energy simulation is a 

common tool used to respond to the rigorous economic-engineering analysis, 

which elevates the level of confidence reached by the final report. 

 

Energy audits are employed to understand the energy usage in buildings, once some 

important information for building performance assessment, such as construction 

characteristics, equipment type and efficiency, and operation monitoring can only be 

obtained through in-situ inspections. Attia et al. (2020) conducted energy audits in high 

performance schools to create two reference buildings of Nearly Zero Energy Buildings 

in Belgium. Brás et al. (2015) presented an integrative approach to refurbish primary 

schools in Portugal. The authors visited one school and carried out survey with the 

occupants, teachers and pupils. Also, invasive and non-invasive tests and equipment 

monitoring were used. Five different refurbishment scenarios were studied, considering 

the cost-effectiveness targets.  

Along these lines, this paper aims to present a method of energy audit adapted to 

the context of low-complex and non-residential buildings in Brazil. The method 

presented herein was based on current existing methods with some specific 

modifications to simplify the process and allow extensive application. An example of 

one actual case that was performed is presented. Although energy audits usually 

comprise strategies for energy reduction in their final step, in this method we are limited 

to identify target end uses for further economic studies. 
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Method 

 

This short-paper aims to present a method to perform simplified energy audits in 

low-complex buildings. First, the planning process will establish the walkthrough plan. 

Then, a site inspection in the building raises all equipment and their power density. An 

interview with occupants’ (or occupant representation) provides the patterns of use of 

the equipment and systems. Finally, all information acquired is input in a spreadsheet, 

which calculates the energy use in the audited buildings, presenting also the breakdown 

of energy consumption by end use and by month. Figure D.1 shows the flowchart of the 

method. 

 

 

Figure D.1 – Flowchart of the method. 

Applicability 

 

This method is suitable to perform energy audits in low-complex and non-residential 

buildings. By low complex we assume that the building: 

● Is supplied in low voltage. 

● If there is an air-conditioning system, it is by means of single-units (not central 

units such as Chillers or Cooling towers); 

● Does not have high-demand or specific loads. 

Furthermore, it covers electrical energy usage. Therefore, this method is adapted 

and suitable for the following building typologies: small and average offices; Schools; 

Nurseries; Small retails; Small grocery stores; Small hotels and alike. 
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Step 1 – Energy audit plan 

 

In this method we assume that a certain building was selected to receive an 

energy audit and there is a channel of communication between the energy audit team 

and the responsible staff of the building. 

The first step is to plan the site visit. A first data collecting is necessary to 

primarily understand the building architecture and context. Thus, the drawings of the 

building, their location and a brief description is necessary to plan the visit. Floor-plan 

area for each environment and window specifications are essential. Additionally, it is 

important to obtain at least 2 years of energy consumption from utility bills, to establish 

a solid use pattern. The actual energy consumption is then compared with the energy 

end use estimated. 

It is important to study the floor-plan layout and prepare a clear version of the 

drawings. Rooms can be numbered and a roadmap can be included in the drawings to 

facilitate the walkthrough during the inspection. At this point, it is important to 

underline the equipment that need to be measured and to register all questions that were 

not clear in the drawings. All the information important to perform the posterior 

research should be noted in an organized way.  

The material necessary to perform the site inspection includes: 

● Spreadsheets to collect data; 

● Energy monitoring equipment; 

● Measuring tape and similar equipment; 

● Equipment for image registration (smartphone, cameras, etc). 

The site inspection should be previously scheduled and confirmed with the building 

administration. 

 

Step 2 – Site inspection 

 

A comprehensive site inspection is performed to collect information about all 

systems and equipment that consumes energy in the building. It is mandatory that the 

site inspection is accompanied by a building manager. Ideally, this person (or people) 

should be a staff of the building – who knows operation details and occupation 

dynamics. 
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During the previous step (Energy audit plan), we recommend to arrange a 

roadmap to guide inspection throughout the building. In this step, we recommend to 

begin by visiting each room in the building and to classify them according to space 

types. Also, it is possible to register their floor-plan area, their window-to-wall ratio and 

the orientation of the window. Space type is the nomenclature given to spaces of the 

building that share similar characteristics, considering their occupation and operation. 

For example, for school buildings, we defined three space types: classrooms, 

transitional spaces (such as halls and aisles) and offices rooms. Each building has its 

own space types classification, so this step it is hard to generalise. We suggest to use 

Table D.2 to help characterise the spaces. 

 

Table D.2 – Classification of the building spaces. 

Space Space type 
Floor-plan area 

(m²) 

Window 

orientation 

Window-to-

Wall Ratio (%) 

Example 1 Space type i    

Example 2 Space type ii    

... 

Example N Space type N    

 

Meanwhile visiting each space to classify their type, a careful observation of the 

space can be carried out. We recommend a top-to-bottom observation, starting by 

identifying the lighting system in the space, then going through the systems installed in 

the wall – generally fans and air-conditioning – and finally registering other equipment 

present in the space. Regarding the lighting system, we suggest to register their type, the 

number of light bulbs and their corresponding power. Usually, a space shares the same 

type and power of lighting systems, but several types of lightings can be found in 

different spaces. We recommend to use Table D.3 to register lighting data. 

 

Table D.3 – Lighting data collecting table. 

Space 

Lighting type 1 Lighting type 2 Lighting type N 

Power 

(W) 
Quantity 

Power 

(W) 
Quantity 

Power 

(W) 
Quantity 

Example 1       

Example 2       

... 

Example N       
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After collecting lighting data in the space, it is possible to register the 

information of equipment. In this stage, a careful observation of the equipment, their 

names, their nominal power and their daily usage – the daily usage can be informed by 

the building manager that accompanies the site inspection. Some electronic equipment 

will need a special attention regarding their coefficient of performance – such as air-

conditioning and refrigerators, because this kind of equipment does not operate always 

consuming the same nominal power.  

Thus, the nominal power indicated by the label might not match with the actual 

energy usage. For this kind of equipment, the coefficient of performance is available in 

the energy label. Otherwise, a simple measurement can be performed using an energy 

monitoring equipment (a 24 hours monitoring is recommended). Other different 

equipment that works in cycles, such as washing machines and clothes drier can be 

measured as well. In this case, the monitoring can be performed according to one cycle 

of the equipment, and it is possible to ask the building manager how many cycles a day 

is usually done. In the building’s typologies eligible for this type of energy audit, 

reactive power is usually not an issue, once the power factor is commonly observed as 

higher than 0.95. If the utility bill informs a power factor lower than 0.95, we suggest to 

perform a monitoring test in all equipment to measure the reactive power usage. We 

recommend to use Table D.4 to help collect the equipment data. 

 

Table D.4 – Equipment data collecting table. 

End use 

type 

Equipment 

name 

Equipment 

Power 

(W) 

Quantity of 

equipment 

Typical 

daily usage 

(h) 

Usage 

factor 

(W/W) 

Space 

End use A Example 1      

End use B Example 2      

… 

End use Z Example N      

 

Additionally, it is highly recommended to take pictures of all spaces during the 

site inspection. Register the spaces, the equipment and the moment in general can be 

handy in the moment of tabulating data or to solve possible later queries. 

According to the building typology, end-uses should be categorised in this step: 

Air-conditioning; space heating; fans; water heating; plug loads; data processing; 

lighting; water pumps; specific loads; refrigerators; Laundry (washing machine and 

clothes dryer). 
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Step 3 – Interview with the building manager 

 

After the inspection of each space of the building and the raise of all equipment 

information, an interview with the building manager can be conducted. This interview is 

a survey to characterise the building occupation and the systems’ operation. 

The literature supports that the role of the occupant behaviour in the energy 

consumption is sometimes a cause for performance gap. Often, the occupant behaviour 

is a key information that determines the energy usage. Thus, to address this important 

issue, this method intends to ask directly to an effective occupant how the occupation 

and operation of the building occurs. The advantage of this method is that the 

occupation is characterised according to the space types, while the operation of the 

systems is characterised according to the end use. Grouping those issues in this way (in 

general aspects) facilitates for the building manager to remember the answer, making 

the question easier to answer. This approach is useful for non-complex and non-

residential buildings because this kind of building often operates their systems in a very 

similar way. 

In order to make this interview more applicable, we recommend to split the 

question in two parts. First, the characterisation of the occupation can be performed 

according to the space type throughout the year by asking the building manager the 

percentage of occupation of the certain space type in every month. The characterisation 

of the occupation according to space types can be very effective, and people usually 

have a good discernment of the information in terms of percentage. We recommend the 

use of Table D.5 for this assessment. 

 

Table D.5 – Occupation of the environment types. 

Space type Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Space type i             

Space type ii             

… 

Space type N             

 

Next, a similar approach can be performed to register the operation of the 

equipment throughout the year according to the end use listed in the building. For each 

end use identified in the building, it can be asked to the building manager the percentage 

of usage in every month. We advise the use of Table D.6 for such data collecting.  
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Table D.6 – Operation of the equipment. 

End use Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

End use A             

End use B             

… 

End use Z             

 

Since this energy audit is adapted for non-complex buildings, usually a building 

manager is eligible to provide such information regarding occupation and operation. 

Finally, it is possible to ask about the working days. It can be different according 

to each building typology, so it is important to obtain this information in a reliable way. 

We recommend the use of Table D.7 for such data gathering. 

 

Table D.7– Useful working days of the building. 

Month Workdays* 

January 22 

February 20 

March 20 

April 21 

May 22 

June 20 

July 23 

August 22 

September 21 

October 23 

November 20 

December 21 

* In this case, we present the standard workdays in Brazil. 

 

Step 4 – Energy use estimation 

 

After the site inspection, it is possible to organise and tabulate the collected data 

into spreadsheets to estimate the energy use. Since every equipment was collected and 

their use estimated by the building manager, it is possible to estimate the monthly 

energy usage of all equipment. Also, every equipment was assigned with their end use 

and space type, which allows to group the energy use by end use and by space type. 

We programmed a dynamic and standard spreadsheet to facilitate this process. 

Also, this standard spreadsheet facilitates the use of Tables D.2 to D.6 for data 

collecting. Table D.8 shows the spreadsheet structure and explains each sheet contents. 
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Table D.8 – Spreadsheet structure. 

Sheet Description 

(1) Information 

This sheet is used to register the building main information, such as the 

building name, their ownership, the name and contact of the building 

manager, its typology and a brief description of the building features and 

usage. 

(2) Spaces and 

lighting 

In this sheet, it must be registered data regarding the spaces of the 

building (Table 2) including their space types registration. Also, it is 

possible to register the lighting information (Table 3) according to each 

space. The spreadsheet automatically calculates the total energy usage for 

lighting for each space at the end of the rows, after the matrix of operation 

and occupation is done. 

(3) Equipment 

In this sheet, all the equipment in the building is registered according to 

Table 4, i.e. the registration of the nominal power, daily operation hours, 

and location. 

(4) Occupation 

and Operation 

Matrices 

This sheet is used to specify the occupation and operation estimation for 

each month, according to Tables 5 and 6, collected in the interview with 

the building manager. The occupation is divided by space type and the 

operation by end uses. The results are assigned in percentage.  

(5) Experiments 

This sheet registers data collected from the experiments measured during 

the site inspection. Usually, monitoring is used to assess energy 

consumption of freezers, refrigerators, washing machines, dryers and air-

conditioning systems. 

(6) Results 

This sheet presents the outcomes of the energy use estimation. The 

formulas on this sheet use the information from sheets (2), (3), (4) and 

(5). The estimated monthly energy consumption is presented according to 

each end use, each space type and for the whole-building. Additionally, it 

is possible to compare the predicted and the actual energy monthly 

consumption in order to calibrate the estimation for a realistic outcome. 

 

Figure D.2 shows the integration between data into the spreadsheet through a 

visual schema. It is possible to see how the calculations are performed. 

 

Figure D.2 – Schema of the spreadsheet workflow. 
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The energy consumption estimation is performed through a calculation 

considering the nominal power of each equipment or lighting, their hour of operation, 

their days of operation and a coefficient considering the operation and the occupation of 

the space where the equipment or lighting is. Equation 1 demonstrates this calculation 

(we use equipment to demonstrate the formulas but the same calculation is valid for 

energy consumption estimation of the lighting). 

 

𝐸𝑒,𝑠
𝑚 =

𝑃𝑒

1000
× ℎ𝑒 × 𝑑𝑒

𝑚 ×
1

𝑓
× 𝑐𝑒,𝑠

𝑚      (1) 

 

where: E is the monthly energy consumption of an equipment “e”, in a space 

type “s”, for a month “m” (kWh/month); P is the nominal power of the equipment “e” 

(W); h is the daily operation hours of the equipment “e” (hours/day); d is the number of 

workdays of the month “m” (day/month); f is the coefficient of performance (W/W); 

and c is the coefficient of occupation-operation for the correspondent end use of the 

equipment “e” and the space type “s”, for a month “m” (%). 

All information necessary for Equation 1 is collected during site inspection. The 

nominal power, the usage factor and the daily operation hours are collected through 

Table D.4, while the number of workdays through Table D.7. The coefficient of 

occupation-operation is obtained through Equation 2. 

 

𝑐𝑒,𝑠
𝑚 =  𝑂𝑝𝑒𝑒

𝑚 × 𝑂𝑐𝑐𝑠
𝑚     (2) 

 

where: c is the coefficient of occupation-operation for the correspondent end use 

of the equipment “e” and the space type “s” (%); Ope is the operation ratio of an end 

use “e” for a month “m” (%); Occ is the occupation ratio of a space type “s” for a month 

“m”. 

 

Both operation ratio and occupation ratio were reported by the building manager 

through Tables D.6 and D.5, respectively. 

For example, in January in Brazil, a school’s operation is very low due to the 

holidays. However, there is a small administrative work shift during this period. Then, 

the occupation of office rooms of a given school was estimated as 25% (two out of eight 

administrative staff work in this period during half day shift). In the same school, the 
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occupation of computer lab was set as 0% in January (because there are no classes). The 

operation for computer end use was 100%. According to Equation 2, the coefficient of 

occupation-operation is 25% for computers in office spaces in January, while it is 0% 

for computer in computer labs. From that, it is easy to calculate the energy consumption 

in January for office rooms, considering the nominal power of the computer raised 

during site inspection (200 W), their daily operation (four hours a day – half shift), the 

number of workdays in January (22 days), the coefficient of performance (in this case, 

one); and applying the 25% coefficient of occupation-operation, resulting in 4.4 

kWh/month. 

Then, it is possible to determine the total energy consumption for each end use 

by summing all equipment energy consumption assigned as a given end use “e”, for all 

months (Equation 3). 

 

𝑈𝑒 =  ∑𝑚
𝑖=0 ∑𝑒

𝑖=0 𝐸𝑘,𝑠
𝑚       (3) 

 

where: U is the total energy consumption of an end use “e” (kWh/year); E is the 

monthly energy consumption of an equipment “k” assigned as end use “e”, in a space 

type “s”, for a month “m” (kWh/month). 

   

It is handy to represent the end use analysis in a percentage perspective. Thus, it 

is possible to view accurately the impact of each end use on the annual energy 

consumption of the building. Similarly, it is possible to determine the total energy 

consumption for each space type by summing all equipment energy consumption 

assigned in a given space type “s” (Equation 4). 

 

𝑇𝑠
𝑚 =  ∑𝑠

𝑖=0 𝐸𝑒,𝑠
𝑚       (4) 

 

where: T is the total energy consumption of a space type “s” (kWh/month); E is 

the monthly energy consumption of an equipment “k” assigned as end use “e”, in a 

space type “s”, for a month “m” (kWh/month). 

Finally, the total monthly energy consumption can the obtained by summing all 

equipment energy consumption according to their month (Equation 5). 
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𝑀𝑚 =  ∑𝑚
𝑖=0 𝐸𝑒,𝑠

𝑚       (5) 

 

where: M is the total energy consumption of a month “m” (kWh/month); E is the 

monthly energy consumption of an equipment “k” assigned as end use “e”, in a space 

type “s”, for a month “m” (kWh/month). 

The monthly whole-building energy consumption can be used to calibrate the 

estimation, as shown in Section 5. Also, the monthly whole-building energy 

consumption can be used to determine the whole-building annual energy consumption. 

For further analysis, the whole-building annual energy consumption can be used to 

determine the Energy Use Intensity in terms of floor-plan area (kWh/m².year) and 

occupation (kWh/person.year). For high air-conditioned buildings, it can be useful to 

analyse the EUI in terms of the volume (kWh/m³.year) using the building height 

collected initially. 

Therefore, by completing the spreadsheet it is expected that it will be possible to 

understand better the building operation and occupation, as well as the energy usage in 

practice. Thus, Energy Efficiency Measures (EEMs) can be proposed in a more specific 

way, considering specific conditions identified during the energy audit process.  

 

Step 5 – Calibration of the estimated energy use 

 

Calibrating the estimated energy consumption is an important step to provide 

reliable results. In this method, the calibration was performed considering the Annual 

Percentage Difference (APD) and Monthly Percentual Difference (MPD). We used the 

difference between the monthly energy consumption registered by the utility bill and the 

monthly energy consumption estimated according to the energy audit process to 

determine the APD (Equation 6) and the MPD (Equation 7). 

 

𝐴𝑃𝐷 = (𝐴𝑝 − 𝐴𝑎)/𝐴𝑎     (6) 

 

Where: APD is the annual percentual difference of energy consumption (%); Ap 

is the predicted annual energy consumption (kWh/year); Aa is the actual annual energy 

consumption (kWh/year). 
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𝑀𝑃𝐷 = (𝑀𝑝 − 𝑀𝑎)/𝑀𝑎     (7) 

 

Where: MPD is the monthly percentual difference of energy consumption (%); 

Mp is the predicted monthly energy consumption (kWh/month); Ma is the actual 

monthly energy consumption (kWh/month). 

 

In our experience, APDs around 10% provide good approximations with the 

actual energy consumption pattern. The calibration consists of an iterative process to 

both reduce the APD and MPD between predicted and actual energy consumption. We 

recommend to perform the calibration according to the following orderly steps. 

 

1. We recommend to begin the calibration process by reviewing all information 

on the energy audit. Attentively interpret the results and make sure that the 

they converge with what was observed during the site inspection. 

2. Identify the most impactful end use (with major percentage in the annual 

energy consumption). 

3. Adjust the operation values in “Operation-Occupation Sheet” of this most 

impactful end use by increasing or decreasing the values in 5% of the 

months with MPC higher than 20% (increase for negative percentage or 

decrease for positive percentage). 

4. Check the APD. If it continues to be higher than 10%, repeat steps 1 and 2 

by adjusting values in 10%. 

5. If the APD continues to be higher than 10%, identify the most important 

space type and adjust its occupation values in “Operation-Occupation Sheet” 

by increasing or decreasing the values in 5% of the months with MPC higher 

than 20% (increase for negative percentage or decrease for positive 

percentage). 

6. Check the APD. If it continues to be higher than 10%, repeat step 4 by 

adjusting values in 10%. 

7. If the APD continues to be higher than 10%, consider adjusting the second 

most impactful end use by the same way of steps 2 to 5, and so on. The 

lower the impact of an end use on the total energy consumption the lower the 

impact of this adjustment on the calibration. 
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8. If the APD continues to be higher than 10%, we recommend to carefully 

review the energy audit information: 

a. Check if the most impactful end use identified on this energy audit 

make sense for this typology; 

b. Check if the workdays make sense for this typology; 

c. Double-check the nominal power information and hours of operation 

of the equipment. 
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Appendix E – Energy audit reports 

 

This appendix presents the report of the energy audit results performed in three schools 

in Florianópolis. 

 

Energy Audit Report 01 

EBM Almirante Carvalhal 

Address: R. Bento Góia 113, Coqueiros, 

Florianópolis 

 

Floor plan area:   1,283.08 m² 

Number of Students: 537 students 

Number of employees:  21 employees 

Date of inspection: August 28, 2020 

Actual EUI: 28.9 kWh/m².year 

EUI predicted with the 

energy audit: 
27.5 kWh/m².year 

 

 
Figure E.1 – Building location 

1. Building floor-plan 

 

Figure E. 2 – Schematic representation of the building floor-plan (no scale) 

2. List of spaces and lighting 

 

Table E.1– List of spaces and lighting characterisation 

Space Space type Area (m²) 
Total lighting 

power (W) 

Aisles Transitory 128.3 100 

Bathroom 1 Transitory 15.6 50 

Bath-

rooms 1 

and 2

Classroom 

1

Pedagogic 

support

Classroom 

2

Classroom 

3

Classroom 

4
Classroom 

5

Science 

lab

Computer 

lab

Multi-

disciplinary 

room

Classroom 

6

Classroom 

7

Library

Classroom 

8

Classroom 

9

Classroom 

10Kitchen

Principal’s office

Secretariat
Teacher’s 

room

Pedagogic 

team’s 

office

Service support

Internal 

courtyard

Aisles

Aisles

Bathroom 3

Physical education
Front door

Reception
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Table E.1 – List of spaces and lighting characterisation (continuation). 

Space Space type Area (m²) 
Total lighting 

power (W) 

Bathroom 2 Transitory 40.2 50 

Bathroom 3 Transitory 158.3 50 

Classroom 2 Classroom 51.2 220 

Classroom 3 Classroom 39 290 

Classroom 4 Classroom 49.2 215 

Classroom 5 Classroom 35.7 120 

Classroom 6 Classroom 47.7 340 

Classroom 7 Classroom 49.2 230 

Classroom 8 Classroom 48.4 250 

Classroom 10 Classroom 51.2 245 

Classroom 11 Classroom 51.2 235 

Computer lab Classroom 35.7 160 

External Courtyard Transitory 47.5 0 

Intern courtyard Transitory 160.9 245 

Kitchen Transitory 35.7 50 

Library Classroom 89.8 490 

Multidisciplinary room Classroom 24.2 90 

Pedagogic team’s office Office 24.2 90 

Pedagogic support Classroom 49 215 

Physical education Transitory 7.6 15 

Principal’s office Classroom 16.9 100 

Reception Office 47.3 50 

Science lab Classroom 51.2 300 

Secretariat Office 24 100 

Service support Transitory 19.7 75 

Teacher’s office Office 29.6 90 

 

3. List of equipment in each space and their features 

 

Table E.2 – List of equipment and their characterisation 

Equipment End-use Space Quant. 
Unitary 

Power (W) 

Total 

Power 

(W) 

Daily 

Operation 

(h) 

HVAC unlabelled HVAC Secretariat 1 7500.0 7500.0 8.0 

HVAC Label A HVAC Principal's office 1 3514.8 12000.0 8.0 

HVAC Label B HVAC Classroom 4 1 6443.8 22000.0 4.0 

HVAC Label B HVAC Classroom 5 1 6443.8 22000.0 4.0 

HVAC Label B HVAC Classroom 6 1 6443.8 22000.0 4.0 

HVAC Label B HVAC Classroom 7 1 6443.8 22000.0 4.0 

HVAC Label B HVAC Classroom 8 1 6443.8 22000.0 4.0 

HVAC Label C HVAC Library 1 7029.6 24000.0 4.0 

HVAC Label A HVAC 
Pedagogic team’s 

office 
1 7029.6 24000.0 8.0 

HVAC Label A HVAC Teacher’s office 1 7029.6 24000.0 8.0 

HVAC Label A HVAC Science lab 1 7029.6 24000.0 4.0 
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Table E.2 – List of equipment and their characterisation (continuation). 

Equipment End-use Space Quant. 
Unitary 

Power (W) 

Total 

Power 

(W) 

Daily 

Operation 

(h) 

HVAC Label A HVAC 
Multidisciplinary 

room 
1 7029.6 24000.0 4.0 

HVAC Label A HVAC Classroom 1 1 8787.0 30000.0 4.0 

HVAC Label A HVAC Classroom 10 1 8787.0 30000.0 4.0 

HVAC Label A HVAC Classroom 2 1 8787.0 30000.0 4.0 

HVAC Label A HVAC Classroom 3 1 8787.0 30000.0 4.0 

HVAC Label A HVAC Computer lab 1 8787.0 30000.0 4.0 

Fan 200W Fans Pedagogic support 1 200.0 200.0 8.0 

Fan 200W Fans Pedagogic support 1 200.0 200.0 8.0 

Electric shower Hot water Bathroom 1 5500.0 5500.0 1.0 

Fan 200W Fans Physical education 1 200.0 200.0 8.0 

Drinking fountain Other equipment Internal Courtyard 2 145.0 290.0 24.0 

Drinking fountain Other equipment External Courtyard 2 125.0 250.0 24.0 

Fan 200W Fans Reception 1 200.0 200.0 6.0 

Electric shower Hot water Kitchen 2 5500.0 11000.0 1.5 

Electric oven Electric oven Kitchen 1 1750.0 1750.0 2.0 

Fan 160W Fans Teacher’s office 1 160.0 160.0 6.0 

Fan 160W Fans Classroom 3 1 160.0 160.0 6.0 

Fan 160W Fans Classroom 4 1 160.0 160.0 6.0 

Fan 160W Fans Classroom 5 1 160.0 160.0 6.0 

Fan 160W Fans Secretariat 1 160.0 160.0 6.0 

Fan 160W Fans Library 2 160.0 320.0 6.0 

Fan 160W Fans Classroom 11 2 160.0 320.0 6.0 

Fan 160W Fans Classroom 10 2 160.0 320.0 6.0 

Fan 160W Fans Classroom 2 2 160.0 320.0 6.0 

Fan 160W Fans Classroom 6 2 160.0 320.0 6.0 

Fan 160W Fans Classroom 8 2 160.0 320.0 6.0 

Fan 160W Fans Science lab 2 160.0 320.0 6.0 

Fan 160W Fans 
Multidisciplinary 

room 
2 160.0 320.0 6.0 

Fan 160W Fans Classroom 7 3 160.0 480.0 6.0 

Computer Computer Principal’s office 2 150.0 300.0 8.0 

Computer Computer Secretariat 2 150.0 300.0 8.0 

Computer Computer 
Pedagogic team’s 

office 
3 150.0 450.0 8.0 

Computer Computer 
Multidisciplinary 

room 
3 150.0 450.0 8.0 

Computer Computer Computer lab 20 150.0 3000.0 0.2 

TV Other equipment 
Pedagogic team’s 

office 
1 300.0 300.0 0.2 

TV Other equipment Library 1 300.0 300.0 0.2 

Projector Other equipment Pedagogic support 1 326.0 326.0 0.2 

Printer Other equipment Reception 1 45.0 45.0 8.0 

Printer Other equipment Secretariat 1 45.0 45.0 8.0 

Rack Other equipment Computer lab 1 3000.0 3000.0 24.0 

Refrigerators 1 Refrigerators Kitchen 1 39.0 39.0 24.0 

Refrigerators 2 Refrigerators Kitchen 1 40.0 40.0 24.0 
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Table E.2 – List of equipment and their characterisation (continuation). 

Equipment End-use Space Quant. 
Unitary 

Power (W) 

Total 

Power 

(W) 

Daily 

Operation 

(h) 

Refrigerators 3 Refrigerators Kitchen 1 48.0 48.0 24.0 

Freezer 1 Refrigerators Kitchen 1 46.3 46.3 24.0 

Freezer 2 Refrigerators Kitchen 1 84.0 84.0 24.0 

Freezer 3 Refrigerators Kitchen 1 41.0 41.0 24.0 

 

4. Operation and Occupation Schedules 

Table E.3 – Schedules of operation for each end use. 

End use 
Operation 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

HVAC 1.00 0.50 0.75 0.75 0.75 0.50 0.25 0.25 0.25 0.50 0.50 1.00 

Hot water 0.00 0.50 1.00 1.00 1.00 1.00 0.50 1.00 1.00 1.00 1.00 0.50 

Lighting 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Fans 1.00 0.50 0.75 0.75 1.00 0.50 0.25 0.25 0.25 0.50 0.50 1.00 

Computer 0.50 1.00 1.00 1.00 1.00 0.50 0.50 1.00 1.00 1.00 1.00 0.50 

Other 0.00 1.00 1.00 1.00 1.00 1.00 0.50 1.00 1.00 1.00 1.00 0.50 

Refrigerators 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Electric Oven 0.25 1.00 1.00 1.00 1.00 0.25 0.25 1.00 1.00 1.00 1.00 0.50 

 

Table E.4– Schedules of occupation for each space type. 

Space type 
Occupation 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Office 0.25 0.50 0.75 1.00 1.00 0.75 0.75 1.00 1.00 1.00 0.75 0.75 

Classroom 0.10 0.25 1.00 1.00 1.00 0.50 0.75 1.00 1.00 1.00 1.00 0.75 

Transitory 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 

5. Predicted and actual monthly energy consumption 

 
Figure E.3 – Predicted and actual monthly energy consumption. Estimation was 

performed through the energy audit method presented in Appendix D. 
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6. Annual end-use proportions 

 

 
Figure E.4 – Annual end use estimations. Estimation was performed through the energy 

audit method presented in Appendix D. 

 

7. Photographic record 

  
(a) External façade (b) Typical classroom 

  
(c) Library overview (d) Computerlab overview 

  

Figure E.5 – Photographic record of the energy audit inspection in the school Almirante 

Carvalhal. 
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(e) Detail: refrigerators (f) Detail: water heater in the kitchen 

 

Figure E.5 – Photographic record of the energy audit inspection in the school Almirante 

Carvalhal (continuation). 
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Energy Audit Report 02 

EBM Beatriz de Souza Brito 

Address: R João Evangelista da Costa 455, 

Pantanal, Florianópolis 

 

Floor plan area:   2.183 m² 

Number of Students: 531 students 

Number of employees:  24 employees 

Date of inspection: October 1st, 2020 

Actual EUI: 26.9 kWh/m².year 

EUI predicted with the 

energy audit: 
23.5 kWh/m².year 

 

 
Figure E.6 – Building location 

1. Building floor-plan 

 
Figure E.7 – Schematic representation of the building floor-plan (no scale) 
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2. List of spaces and lighting 

 

Table E.5 – List of spaces and lighting characterisation 

Space Space type Area (m²) 
Total lighting 

power (W) 

Cafeteria Transitory 14.15 288 

Kitchen Transitory 28.3 288 

Cafeteria Transitory 97.9 864 

Aisles A Transitory 25 2652 

Support room 1 Transitory 37.72 432 

Support room 2 Transitory 8.05 72 

Auditorium Classroom 117.28 894 

Science lab Classroom 47.65 432 

Classroom 1 Classroom 24.65 144 

Robotics lab Classroom 48.45 432 

Classroom 2 Classroom 95.9 432 

Aisles C Transitory 25 432 

Classroom 3 Classroom 48.24 216 

Classroom 4 Classroom 48.24 216 

Classroom 5 Classroom 48.24 216 

Classroom 6 Classroom 48.24 216 

Aisles D Transitory 25 281 

Computer lab Classroom 48.64 216 

Library Classroom 147.14 648 

Bathroom 1 Transitory 22.18 144 

Bathroom 2 Transitory 24.01 144 

Laundry Transitory 6.4 144 

Classroom 7 Transitory 5.64 144 

Aisles E Transitory 25 338 

Classroom 8 Classroom 48.55 216 

Classroom 9 Classroom 48.55 216 

Classroom 10 Classroom 48.55 216 

Classroom 11 Classroom 48.55 216 

Classroom 12 Classroom 48.55 216 

Aisles F Transitory 25 1000 

Gymnasium Classroom 200 6000 

Bathroom 3 Transitory 9.75 50 

Bathroom 4 Transitory 9.75 25 

Security cabin Office 6 45 

Secretariat Office 42.12 180 

Principal's office Office 12.16 180 

Bathroom 5 Transitory 7.5 54 

Teacher's room Office 60.9 360 

Aisles B Transitory 25 1500 
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3. List of equipment in each space and their features 

 

Table E.6 – List of equipment and their characterisation 

Equipment End-use Space Quant. 
Unitary 

Power (W) 

Total 

Power 

(W) 

Daily 

Operation 

(h) 

Elevator Other equipment Gymnasium 1 2000 2000 0.02 

Drinking fountain Other equipment Gymnasium 2 75 150 24 

Electric shower Hot water Gymnasium 2 5500 11000 2 

Fan Fans Security cabin 1 160 160 8 

Microwave Other equipment Security cabin 1 10 10 2 

Refrigerator Refrigerators Security cabin 1 60 60 24 

Printer Other equipment Secretariat 1 45 45 8 

Fan Fans Secretariat 1 200 200 4 

Computer Computer Secretariat 2 150 300 8 

Computer Computer Principal's office 1 150 150 8 

Fan Fans Principal's office 1 100 100 8 

Computer Computer Teacher's room 1 150 150 8 

Electric oven Electric oven Teacher's room 1 1750 1750 0.5 

Microwave Other equipment Teacher's room 1 10 10 24 

Drinking fountain Other equipment Teacher's room 1 75 75 24 

Refrigerator Refrigerators Teacher's room 1 136 136 24 

Refrigerator Refrigerators Cafeteria 1 45 45 24 

Refrigerator Refrigerators Cafeteria 1 52 52 24 

Freezer Refrigerators Cafeteria 1 123 123 24 

Freezer Refrigerators Cafeteria 1 67 67 24 

Microwave Other equipment Kitchen 1 10 10  

Washing machine Other equipment Kitchen 1 9 9 1 

Electric oven Electric oven Kitchen 1 6000 6000 1 

Fan Fans Cafeteria 1 160 160 4 

Fan Fans Cafeteria 1 200 200 4 

Drinking fountain Other equipment Aisles A 3 75 225 24 

Microwave Other equipment Classroom 1 1 10 10 24 

Refrigerator Refrigerators Classroom 2 1 60 60 24 

HVAC HVAC Auditorium 2 24000 48000 1 

Fan Fans Science lab 1 200 200 4 

Projector Other equipment Science lab 1 326 326 2 

TV Other equipment Science lab 1 300 300 1 

Fan Fans Science lab 1 200 200 4 

Fan Fans Tech lab 1 200 200 6 

Computer Computer Tech lab 6 150 900 8 

Fan Computer Classroom 3 2 160 320 6 

Projector Other equipment Classroom 3 1 326 326 2 

TV Other equipment Classroom 4 1 300 300 2 

Fan Fans Classroom 4 2 160 320 6 

Projector Other equipment Classroom 5 1 326 326 2 

Fan Fans Classroom 6 2 160 320 6 

Projector Other equipment Classroom 7 1 326 326 2 
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Table E.6 – List of equipment and their characterisation (continuation). 

Equipment End-use Space Quant. 
Unitary 

Power (W) 

Total 

Power 

(W) 

Daily 

Operation 

(h) 

Fan Fans Classroom 8 2 160 320 6 

Projector Other equipment Classroom 9 1 326 326 2 

HVAC HVAC Computer lab 1 18000 18000 4 

TV Other equipment Computer lab 2 300 600 2 

Rack Other equipment Computer lab 1 3000 3000 24 

Computer Computer Computer lab 20 150 3000 8 

HVAC HVAC Library 1 18000 18000 4 

Computer Computer Library 6 150 900 8 

Fan Fans Library 2 160 320 4 

Washing machine Other equipment Laundry 1 31 31 0.2 

Fan Fans Classroom 10 2 160 320 6 

Projector Other equipment Classroom 10 1 326 326 2 

Fan Fans Classroom 11 2 160 320 6 

Projector Other equipment Classroom 11 1 326 326 2 

Fan Fans Classroom 12 2 160 320 6 

Projector Other equipment Classroom 12 1 326 326 2 

Fan Fans Classroom 13 2 160 320 6 

Projector Other equipment Classroom 13 1 326 326 2 

Fan Fans Classroom 14 2 160 320 6 

Projector Other equipment Classroom 14 1 326 326 2 

 

4. Operation and Occupation Schedules 

 

Table E.7 – Schedules of operation for each end use. 

End use 
Operation 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

HVAC 1.00 1.00 1.00 1.00 0.75 0.50 0.25 0.25 0.25 0.50 1.00 1.00 

Hot water 0.00 0.50 1.00 1.00 1.00 1.00 0.50 1.00 1.00 1.00 1.00 0.50 

Lighting 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Fans 1.00 1.00 1.00 1.00 1.00 0.50 0.25 0.25 0.25 0.50 1.00 1.00 

Computer 0.50 1.00 1.00 1.00 1.00 0.50 0.50 1.00 1.00 1.00 1.00 0.50 

Other equipment 0.00 1.00 1.00 1.00 1.00 1.00 0.50 1.00 1.00 1.00 1.00 0.50 

Refrigerators 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Electric oven 0.25 1.00 1.00 1.00 1.00 0.25 0.25 1.00 1.00 1.00 1.00 0.50 

 

Table E.8 – Schedules of occupation for each space type. 

Space type 
Occupation 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Office 0.25 0.50 0.75 1.00 1.00 0.75 0.75 1.00 1.00 1.00 0.75 0.75 

Classroom 0.10 0.25 1.00 1.00 1.00 0.75 0.75 1.00 1.00 1.00 1.00 0.75 

Transitory 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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5. Predicted and actual monthly energy consumption 

 

 
Figure E.8 – Predicted and actual monthly energy consumption. Estimation was 

performed through the energy audit method presented in Appendix D. 

 

6. Annual end-use proportions 

 

 
Figure E.9 – Annual end use estimations. Estimation was performed through the energy 

audit method presented in Appendix D. 
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7. Photographic record 

 

  
(a) External façade of classrooms (b) Typical classrooms. Note that there are 

windows in two opposite façades and no HVAC. 

  

  
(c) Computer lab overview (d) Principal’s office overview 

  

  
(e) Auditorium overview (f) Ailes are opened spaces. 

 

Figure E.10 – Photographic record of the energy audit inspection in the school Beatriz 

de Souza Brito 
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Energy Audit Report 03 

EBM João Alfredo Rohr 

Address: R João Pio Duarte Silva 1123, Córrego 

Grande, Florianópolis 

 

Floor plan area:   1,111 m² 

Number of Students: 379 students 

Number of employees:  14 employees 

Date of inspection: October 1st, 2020 

Actual EUI: 22.8 kWh/m².year 

EUI predicted with the 

energy audit: 
23.8 kWh/m².year 

 

 
Figure E.11 – Building location 

1. Building floor-plan 

 

Figure E.12 – Schematic representation of the building floor-plan (no scale) 

 

2. List of spaces and lighting  

 

Table E.9– List of spaces and lighting characterisation 

Space Space type Area (m²) 
Total lighting 

power (W) 

Library Classroom 46.41 260 

Classroom 2 Classroom 46.06 476 

Classroom 3 Classroom 46.26 180 
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Table E.9 – List of spaces and lighting characterisation (continuation). 

Space Space type Area (m²) 
Total lighting 

power (W) 

Classroom 4 Classroom 46.03 364 

Classroom 5 Classroom 46.34 332 

Bathroom 1 Transitory 20 36 

Aisles Transitory 98.99 507 

Internal Courtyard Transitory 80 544 

Cafeteria Transitory 63.49 216 

Kitchen Transitory 20 210 

Storage room 1 Transitory 11.54 55 

Classroom 6 Classroom 45.74 348 

Classroom 7 Classroom 46.79 392 

Classroom 8 Classroom 46.65 436 

Classroom 9 Classroom 46.83 348 

Computer lab Classroom 46.7 436 

Science lab Classroom 46.13 436 

Bathroom 2 Transitory 20 177 

Storage room 2 Transitory 5.98 100 

Courtyard Transitory - 255 

Bathroom 3 Transitory 25.5 50 

Gymnasium Transitory 200 2500 

Principal's Office Office 42.07 718 

 

3. List of equipment in each space and their features 

 

Table E.10 – List of equipment and their characterisation 

Equipment End-use Space Quant. 

Unitary 

Power 

(W) 

Total 

Power 

(W) 

Daily 

Operation 

(h) 

HVAC HVAC Library 1 18000 18000 4 

Fan Fans Library 2 160 320 4 

Computer Computer Library 2 150 300 4 

TV Other equipment Library 1 300 300 2 

Microwave Other equipment Classroom 1 1 1400 1400 0 

Computer Computer Classroom 1 2 150 300 4 

HVAC HVAC Classroom 1 1 12000 12000 4 

Refrigerator Refrigerators Classroom 1 1 60 60 24 

HVAC HVAC Classroom 2 1 30000 30000 6 

Fan Fans Classroom 2 1 160 160 4 

Projector Other equipment Classroom 2 1 326 326  

Computer Computer Classroom 2 3 150 450 4 

HVAC HVAC Classroom 3 1 30000 30000 6 

Fan Fans Classroom 3 1 160 160 4 

Projector Other equipment Classroom 3 1 326 326 2 

HVAC HVAC Classroom 4 1 30000 30000 6 

Fan Fans Classroom 4 1 160 160 4 

Projector Other equipment Classroom 4 1 326 326 2 

Drinking fountain Other equipment Internal Courtyard 2 76 152 24 
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Table E.10 – List of equipment and their characterisation (continuation). 

Equipment End-use Space Quant. 

Unitary 

Power 

(W) 

Total 

Power 

(W) 

Daily 

Operation 

(h) 

Fan Fans 
Internal 

Courtyard 
4 16 64 2 

Fan Fans Cafeteria 2 160 320 2 

Drinking fountain 
Other 

equipment 
Cafeteria 1 75 75 24 

Water heater Hot water Cafeteria 1 5500 5500 1 

Microwave 
Other 

equipment 
Cafeteria 1 1400 1400 0 

Water heater Hot water Kitchen 1 5500 5500 1 

HVAC HVAC Classroom 5 1 30000 30000 6 

Projector 
Other 

equipment 
Classroom 5 1 326 326 2 

HVAC HVAC Classroom 6 1 30000 30000 6 

Projector 
Other 

equipment 
Classroom 6 1 326 326 2 

HVAC HVAC Classroom 7 1 30000 30000 6 

Projector 
Other 

equipment 
Classroom 7 1 326 326 2 

Fan Fans Classroom 7 1 160 160 4 

HVAC HVAC Classroom 8 1 30000 30000 6 

Projector 
Other 

equipment 
Classroom 8 1 326 326 2 

Fan Fans Classroom 8 1 160 160 4 

Computer Computer Computer lab 20 150 3000 8 

Rack 
Other 

equipment 
Computer lab 1 3000 3000 24 

HVAC HVAC Computer lab 2 7500 15000 6 

Printer 
Other 

equipment 
Computer lab 1 45 45 8 

HVAC HVAC Science lab 1 18000 18000 4 

Fan Fans Science lab 2 160 320 4 

Electric shower Hot water Bathroom 2 1 5500 5500 0 

Refrigerator Refrigerator Cafeteria 1 75 75 24 

Refrigerator Refrigerator Kitchen 1 99 99 24 

Refrigerator Refrigerator Kitchen 1 68 68 24 

Freezer Refrigerator Kitchen 1 149 149 24 

 

4. Operation and Occupation Schedules 

 

Table E.11 – Schedules of operation for each end use. 

End use 
Operation 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

HVAC 1.00 1.00 1.00 1.00 0.75 0.50 0.25 0.25 0.25 0.50 1.00 1.00 

Hot water 0.00 0.50 1.00 1.00 1.00 1.00 0.50 1.00 1.00 1.00 1.00 0.50 

Lighting 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Fans 1.00 1.00 1.00 1.00 1.00 0.50 0.25 0.25 0.25 0.50 1.00 1.00 

Computer 0.50 1.00 1.00 1.00 1.00 0.50 0.50 1.00 1.00 1.00 1.00 0.50 
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Table E.11 – Schedules of operation for each end use (continuation). 

End use 
Operation 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Other equipment 0.00 1.00 1.00 1.00 1.00 1.00 0.50 1.00 1.00 1.00 1.00 0.50 

Refrigerators 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Electric oven 0.25 1.00 1.00 1.00 1.00 0.25 0.25 1.00 1.00 1.00 1.00 0.50 

 

Table E.12 – Schedules of occupation for each space type. 

Space type 
Occupation 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Office 0.25 0.50 0.75 1.00 1.00 0.75 0.75 1.00 1.00 1.00 0.75 0.75 

Classroom 0.10 0.25 1.00 1.00 1.00 0.75 0.75 1.00 1.00 1.00 1.00 0.75 

Transitory 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 

5. Predicted and actual monthly energy consumption 

 
Figure E.13 – Predicted and actual monthly energy consumption. Estimation was 

performed through the energy audit method presented in Appendix D. 

 

6. Annual end-use proportions 

 

 
Figure E.14 – Annual end use estimations. Estimation was performed through the 

energy audit method presented in Appendix D.
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Photographic record 

 

  
(a) External façade 

(Source: Google Maps) 

(b) Typical classroom 

  

  
(c) Detail: Type of the predominant lighting 

system. A double LED  T5 18W. 

(d) Detail: radiant barrier above the roofing 

  

 
 

(e) Detail: Brises-soleil outside the some windows (f) Overiew of the Principal’s office. 

Figure E.15 – Photographic record of the energy audit inspection in the school João 

Alfredo Rohr  
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Appendix F – Shared authorship agreement of Chapter 6 
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