UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO TECNOLÓGICO DEPARTAMENTO DE ENGENHARIA CIVIL LABORATÓRIO DE EFICIÊNCIA ENERGÉTICA EM EDIFICAÇÕES (LabEEE)

Fone/Fax: (48) 331-5184

www.labeee.ufsc.br

energia@labeee.ufsc.br

Treinamento para o Programa VisualDOE-2 versão 2.61

Autores: Aldomar Pedrini, M.Sc.

Roberto Lamberts, Ph.D.

Fernando Simon Westphal, Eng. Civil

Florianópolis, maio de 1999. Última revisão e atualização: setembro de 1999.

SUMÁRIO

1	INTRODUÇAU	4
2	CRIAÇÃO DE UM MODELO	5
	2.1 FOLDER PROJECT	5
	2.2 FOLDER BLOCKS	
	2.3 FOLDER ZONES	6
	2.4 FOLDER FACADES	
	2.5 FOLDER SYSTEMS	
	2.5.1 HVAC System Editor	
	2.5.2 Heating	
	2.6 FOLDER ZONE AIR	
	2.7 GRAVAÇÃO DO ARQUIVO	
3	SIMULAÇÃO	10
_	3.1 RUN SETUP	
	3.1.1 Folder Simulation	
	3.1.2 Folder Standard DOE-2 Reports - Escolha dos relatórios de saídas do DO	
4	· · · · · · · · · · · · · · · · · · ·	
	4.1 Print Reports	12
	4.2 ARQUIVOS GERADOS SOB O FORMATO PADRÃO DO DOE2.1E	
	4.3 GRAPHS	
5	AVALIAÇÃO DOS RESULTADOS	14
	5.1 SAÍDA PRINT REPORTS	14
	5.2 SAÍDA DOE2.1-E	
6	DEFININDO ALTERNATIVAS	15
7	EMITINDO RELATÓRIOS HORÁRIOS	16
	7.1 Dados horários de cargas térmicas	
	7.2 EVOLUÇÃO DE TEMPERATURA INTERNAS.	
8	BILLING HISTORY	
9	CARACTERIZAÇÃO GEOMÉTRICA COM CAD	20
	9.1 UTILIZANDO O EDITOR GRÁFICO DO VISUALDOE - ALTERNATIVA "CAD"	
	9.2 IMPORTANDO UM ARQUIVO DXF - ALTENATIVA "AUTOCAD"	
	9.3 AVALIAÇÃO DOS RESULTADOS DA ALTERNATIVA "AUTOCAD"	
1(
	10.1 Alternativa "EDF"	
	10.1 ALTERNATIVA EDI'	
	10.3 AVALIAÇÃO DOS RESULTADOS	
11	1 EDICÃO DE MATERIAIS CONSTRUTIVOS	

11.1	ALTERNATIVA "CONST-BR"	26
	1.1 Tijolo de 10 cm	
	1.2 Parede Nacional	
11.	1.3 Cobertura Nacional e Piso Nacional	
11.2	ALTERNATIVA "LAJE ISOLADA"	28
11.3	A VALIAÇÃO DOS RESULTADOS	28
12 DA	YLIGHT CONTROL	29
12.1	Caracterização	29
12.2	A VALIAÇÃO DOS RESULTADOS	29
13 EM	IPREGO DE DAYLIGHT CONTROL COM VARIAÇÃO DE WWR (WINDOW	V
WALL	RATIO)	30
13.1	Caracterização	30
13.2	A VALIAÇÃO DOS RESULTADOS	30
14 VA	RIAÇÃO DO SISTEMA DE CONDICIONAMENTO DE AR (HVAC)	31
14.1	ALTERNATIVA "PSZ EER 1.9"	31
14.2	ALTERNATIVA "SZS"	31
14.3	ALTERNATIVA "SZS COP=0.2"	32
144	A VALIAÇÃO DOS RESULTA DOS	32

1 INTRODUÇÃO

Este material propõe uma série de abordagens para o usuário iniciante do VisualDOE que deseja se familiarizar com os procedimentos básicos de simulação termoenergética de edificações. Sua estrutura baseia-se na experiência do LabEEE em treinamento de novos usuários.

Aconselha-se que o usuário consulte paralelamente a apostila de *Introdução ao VisualDOE*, também elaborada pelo LabEEE, e o manual original do programa.

2 CRIAÇÃO DE UM MODELO

Como exemplo, propõe-se a elaboração de um modelo básico para avaliação dos relatórios de saída, adotando-se o maior número de *defaults* possíveis. São chamados de *defaults* as variáveis previamente definidas pelo VisualDOE.

No exemplo que se segue, os valores em destaque (amarelo) são diferentes dos valores apresentados pelo programa (*default*), e por isso devem ser alterados pelo usuário.

2.1 Folder Project

- Época da construção (Era Built): 1989 to present
- Clima (Climate Zone): Florianópolis TRY
- Tarifa de energia elétrica (*Electric Rate*): EnerCalc
- Tarifa de combustível (Fuel Rate): GNR-2
- Feriados (*Holiday Set*): None
- Azimute da fachada principal (Front Azimuth): 0°
- Taxa de desconto (*Discount Rate*): 0%
- Vida útil do projeto (*Project Life Cycle*): 0

2.2 Folder Blocks

- Pavimento retangular (arraste o primeiro ícone com o mouse e leve para posição da figura ao lado);
- 1 pavimento: 20 m x 50 m (largura x profundidade width x depth)
- Afastamento interno (perimeter depth): 6m
- *Plenum*: não (retirar a seleção da caixa)
- Pé-direito (FFHt *Floor To Floor Hight*): 5.0 m
- Cobertura (*Roof*): R-0 Mass $(U=1.449 \text{ W/(m}^2.\text{K})^1)$
- Piso (*Floor*): R-0 Mass (U=1.111 W/m².K)
- Piso interno (Int Floor): R-0 Mass
- Divisões internas (*Partitions*): Partition (U= 1.316 W/(m².K)).

¹ Os valores de transmitância térmica desse texto se refere ao valores do VisualDOE, que por usa vez não considera a resistência térmica de convecção externa como constante porque é calculada a cada hora segundo condições do vento.

2.3 Folder Zones

- Todas as zonas com as mesmas características selecionar as 4 zonas listadas (clique sobre a primeira e arraste o *mouse* até a última);
- Potência instalada em iluminação (LPD *light* power density): 21.5 W/m²;
- Potência instalada em equipamentos (EPD): 16.10
 W/m²;
- Ocupantes: 23.23 m²/pessoa;
- Condicionamento artificial (Zone Type: Conditioned);
- Ocupação típica de escritórios (Occupancy: Office);
- sem daylight control;
- infiltração de 0.20 trocas de ar dos ambientes por hora.

Obs: para atualizar a imagem do pavimento, clique sobre Draw → Set Scale

2.4 Folder Facades

- Todas as fachadas iguais (selecione todas);
- Largura do bay (Bay width): 5 m;
- Dimensões da janela (width x height: 2.1 m x 1.50 m
- Altura do parapeito (*Sill Height*): 1.10 m
- Vidro (*Glazing Const*): 3 mm claro (Single Clear 3 mm);
- Parede (Wall Const): R-0 Mtl.Frm (U=1.205 W/(m².K)).

2.5 Folder Systems

- Um sistema para toda a edificação (*one system for building*) procedimento 1;
- Definir as características do sistema: botão HVAC
 System Editor procedimento 2.

2.5.1 HVAC System Editor

- Tipo de sistema (*Type*): Packaged Terminal Air Conditioning (procedimento 3);
- Instalação recente (System Era: 1989 to present);
- Retorno de ar por duto (*Return Air Path*: Duct);
- Zona de controle (Control Zone): 1front;
- Dimensionar o aquecedor procedimento 4.

2.5.2 Heating

Capacidade do aquecedor: 0 kW

Após a caracterização do *Systems*, passar para a caracterização do *Plant*, que corresponde à central de água gelada. Ao sair das janelas *Heating* e *HVAC Systems Editor*, clicar o botão *Central Plant Editor*. Neste exemplo, não será utilizado nenhuma central de água gelada.

2.5.3 Central Plant Editor

• Não há resfriadores de líquidos ou caldeiras.

2.6 Folder Zone Air

- Todas as zonas com as mesmas características selecione as 4 zonas listadas (clique sobre a primeira e arraste o *mouse* até a última);
- Insuflamento autodimensionado (*Supply Air*: let program size);
- Renovação de ar de 10 l/s por pessoa (Outside Air);
- Termostato do tipo proporcional (*Thermostat Type*: Proportional).

2.7 Gravação do arquivo

Salve o modelo com o nome BASE.

Procedimento:

- Clique em *File* → *Save As...*
- Escolha o diretório e digite o nome do arquivo.

3 SIMULAÇÃO

Para "rodar" a simulação deve-se executar o comando Run Setup, descrito a seguir.

3.1 Run Setup

3.1.1 Folder Simulation

- Clicar em *Run* → *Setup* (barra de ferramentas)
- Abrirá uma janela chamada Run Setup
- Você já pode "rodar" o modelo clicando o botão Run DOE-2, ou antes, pode escolher os relatórios de saída nos folders Standard DOE-2 Reports e Hourly Reports.

Obs: O folder *Hourly Reports* será tratado em item específico (item 7).

3.1.2 Folder Standard DOE-2 Reports - Escolha dos relatórios de saídas do DOE-2.1E

Alguns dos relatórios padrões mais importantes são listados a seguir:

- LOADS: LS-A (pico de carga térmica dos ambientes), LS-B (componentes do pico de carga térmica de cada ambiente), LS-C (componentes do pico de carga térmica do edifício), LS-F (componentes de cargas térmicas mensais).
- SYSTEMS: SV-A (dimensões dos equipamentos), SS-A (cargas demandadas pelo systems), SS-J (determinação de condições de pico com renovação de ar), SS-K (temperaturas do espaço), SS-O (ocorrência de temperaturas).
- PLANT: PS-C (frequência de operação em carga parcial para os equipamentos), PS-D (cargas satisfeitas), BEPS (resumo de performance energética do edifício, default de saída).
- ECONOMICS: ES-E (resumo de cobrança, default de saída) e ES-F (cobrança segundo os períodos, default de saída).

Após a escolha dos relatórios, voltar para o folder Simulation e clicar o botão Run DOE-2.

Durante a simulação são criados os seguintes arquivos:

- *.gph: contém as informações do modelo que são inteligíveis ao VisualDOE;
- *.i0: contém as informações do modelo que são inteligíveis ao DOE-2 e podem ser lidas em qualquer editor de texto;
- *.bat: é um arquivo executável do modelo para executar no DOE-2;
- *.log: apresenta um relatório de execuções do modelo;
- *.b0: é a confirmação do modelo de entrada, sob formato texto.
- *.00: apresenta relatórios de saída do DOE-2 (completo), em formato texto;
- *.h0: são relatórios horários de saída do DOE-2, em formato texto. Esse tipo de arquivo só é criado se for selecionado algum tipo de relatório horário para alguma alternativa.

4 RESULTADOS DA SIMULAÇÃO (RELATÓRIOS DE SAÍDAS)

4.1 Print Reports

Após a simulação, são escolhidos os relatórios em duas caixas (como mostra a figura abaixo). O caminho para abrir a janela *VisualDOE Reports* é: *File* **>** *Print Reports*. Na janela aberta, selecione o tipo de relatório na caixa da esquerda e a aternativa desejada na caixa da direita. Em seguida, clique em *Print Preview*.

4.2 Arquivos gerados sob o formato padrão do DOE2.1E

Esse tipo de relatório pode ser visualizado em editores de texto como o NOTEPAD, WRITE, WORDPAD e até mesmo o WORD. Para uma melhor interpretação, sugere-se que as fontes sejas convertidas para COURRIER NEW.

4.3 Graphs

São saídas gráficas que empregam dados de desempenho gerados em dois arquivos:

- *.o*: lêem relatórios típicos do DOE-2 (independes da escolha do usuário). As principais apresentadas nestes relatórios são: usos finais, dados de consumo e demanda mensais e avaliação do clima
- *.h*: , lêem relatórios horários solicitados pelo usuário.

5 AVALIAÇÃO DOS RESULTADOS

5.1 Saída PRINT REPORTS

Alguns	índices	de	performance	de	energia	podem	ser	obtidos	seguindo-se o	o caminho	File	→	Print
Reports	5.												

Selecione *Results* (resultados) à esquerda e o caso desejado, à direita. Como, até o momento, só foi simulado uma alternativa, aparece apenas *Base Case* na caixa da direita. O nome *Base Case* é atribuído automaticamente pelo VisualDOE à primeira alternativa caracterizada no modelo

· 1 1	E à primeira alternativa caracterizada no modelo
Em seguida, clique em <i>Print Preview</i> .	
→ Para efeito de avaliação do caso simulado	do, identifique os usos finais de energia citados a seguir:
	kWh (iluminação)
	kWh (equipamentos)
	kWh (resfriamento)
	kWh (ventiladores)
5.2 Saída DOE2.1-E	
No arquivo base.o0, identifique os seguint	es dados de desempenho:
⇒ Pico de carga térmica do LOADS (LS-	C):kW – Data:/ Hora:h
⇒ Pico de carga térmica do SYSTEMS (S	SS-J):kW – Data:/ Hora:h
Capacidade de resfriamento do sistema	de condicionamento de ar para cada zona (SV-A):
Zona	Cooling Capacity
1Front_C	kW
1Left_C	kW
1Back_C	kW
1Right_C	kW
1Interior_C	kW

6 DEFININDO ALTERNATIVAS

Para inserir novas alternativas ao modelo, segue-se o caminho *Edit* → *Define Alternatives...*, na barra de ferramentas.

Abrirá uma janela chamada *Define Alternatives*, na qual estará indicada apenas a alternativa *Base Case*, que corresponde ao modelo base, com as características definidas até agora.

Para incluir uma nova alternativa, clique o botão *Add Alternative Based* on *Selected Alternative*.

Uma nova alternativa será adicionada à lista, com o nome: *New Alternative*.

Mude o nome da alternativa para **Relatorios horarios**, digitando na caixa *Name*. Essa alternativa será usada no módulo de relatórios horários, a seguir.

A partir da criação da alternativa, o usuário pode escolher qual alternativa deseja editar, através do menu *Alternative*, na barra de ferramentas.

7 EMITINDO RELATÓRIOS HORÁRIOS

Após a criação da alternativa **Relatorios horarios**, salve o seu arquivo. (Ainda com o nome de **base.gph**)

A emissão de relatório horários é solicitada na janela de simulação, indicada através do caminho: *Run* → *Setup...*

Na janela Run Setup, vá para o folder Hourly Reports.

As alternativas que aparecem no canto esquerdo inferior da janela correspondem a um grupo de variáveis que podem ser editadas no *Hourly Reports Editor*.

No Hourly Report Editor, analise cada tipo de variável (Variable Type - no alto, à esquerda).

Adote o seguinte procedimento para escolher os relatórios solicitados abaixo:

 Em Variable Type: Building, escolha as cargas de resfriamento para condução por paredes, cobertura, janela; geração de calor por equipamentos, por iluminação, por pessoas (sensível) e ganho térmico por radiação.

 Em Variable Type: Zone-HVAC, selecione o relatório de temperatura horária. (Neste caso, basta excluir as demais variáveis.)

Ao sair do *Hourly Reports Editor*, as alterações passam a valer para os tipos editados. Somente agora, é feita a atribuição dos relatórios horários ao modelo "**Relatorios Horarios**":

- 1) No menu *Type*, selecione *Building*;
- 2) Clique sobre o relatório horário existente: *Building Loads* (à direita);
- 3) Clique sobre Assign Report;
- 4) Nas caixas First day e Last day, especifique o dia de carga térmica máxima citado no relatório LS-C (as datas devem ser entradas no formato norte-americano: mês/dia/ano).
- 5) Em *Type*, escolha *Zone-HVAC*;
- 6) Clique sobre a sala *1Left*;
- 7) Selecione o relatório horário existente: *Zone Flow & Temperatures* (à direita).
- 8) Clique sobre Assign Report;
- 9) Defina a data desejada;
- 10) Repita o mesmo procedimento para a sala *1Right*.

Volte para o folder Simulation e execute a simulação.

Após a simulação, avalie os resultados horários para o dia de pico de carga térmica, através de gráficos. Caminho: *File* → *Graphs*.

7.1 Dados horários de cargas térmicas

7.2 Evolução de temperatura internas

8 BILLING HISTORY

Os valores de consumo e demanda de energia elétrica do modelo simulado podem ser confrontados com dados reais da edificação através do *Billing History*. Caminho: *Edit* → *Billing History*... (na barra de ferramentas).

Para continuar o exemplo, entre com os valores apresentados na tabela abaixo.

Mês	Consumo (kWh)	Demanda (kW)
Janeiro	19000	75
Fevereiro	17500	68
Março	18000	67
Abril	17000	65
Maio	16000	60
Junho	16500	58
Julho	15300	60
Agosto	16100	61
Setembro	16000	65
Outubro	16500	70
Novembro	17000	72
Dezembro	18000	73

A comparação entre os valores simulados e reais pode ser feita ainda no editor *Billing History*, nos folders *kWh Graph* e *kW Graph*, conforme as figuras a seguir.

9 CARACTERIZAÇÃO GEOMÉTRICA COM CAD

O emprego de padrões geométricos (folder *Blocks*) simplifica a caracterização da edificação, sendo indicado apenas quando não houver necessidade de zoneamento interno. Entretanto, o uso desses padrões não permite a caracterização de modelos com maior exigência quanto à definição de ambientes internos.

O VisualDOE permite a criação de modelos geométricos a partir de um editor gráfico próprio ou de arquivos em formato DXF, criados em outro programa, como o AutoCAD, por exemplo.

Para exercitar os 2 métodos supracitados, sugere-se a criação de 2 alternativas denominadas de CAD (com apenas 2 zonas: direita e esquerda) e AUTOCAD (com 3 zonas), ambas derivadas do Base Case. As 3 zonas modeladas correspondem à figura ao lado.

9.1 Utilizando o editor gráfico do VisualDOE - Alternativa "CAD"

Selecione a alternativa CAD, na barra de ferramentas: Alternative CAD

Para o modelagem do bloco na alternativa CAD é necessário eliminar o bloco existente:

- No folder *Blocks*, marque o bloco;
- Na barra de ferramentas, clique em $Edit \Rightarrow Delete$ Block(s);
- Confirme.

Para entrar no editor gráfico do VisualDOE, siga o procedimento a seguir:

- Arraste o último modelo geométrico, à direita, para o espaço destinado à representação do bloco.
- Abrirá a janela Custom Block Editor.

- Adicione a zonas, através do Edit → Add Zone, na barra de ferramentas;
- os vértices podem ser marcados com um simples "click" do mouse ou, de forma mais precisa, através da declaração das coordenadas X, Y, na caixa de texto (indicação 1);

- A primeira zona tem as coordenadas: 0,0 10,0 10,20 5,20 5,30 10,30 10,50 0,50 (tecle ENTER após a declaração de cada par de coordenadas)
- Para fechar o polígono, clique a tecla direita do mouse;
- Clique em Draw → Set Scale, para visualizar a zona inteira.

- Adicione a segunda zona (*Edit* → *Add Zone*)
- Esta zona tem as coordenadas:

10,0 20,0 20,50 10,50 10,30 5,30 5,20 10,20 (tecle ENTER após declarar cada par de coordenadas x,y)

- Feche o polígono clicando a tecla direita do mouse;
- Para concluir, clique o botão *Exit and Update*.

Após a caracterização geométrica, caracterize as formas de uso das zonas com os *defaults* do programa, (repasse as características definidas nos folders: *Blocks*, *Zones*, *Facades*, *Systems* e *Zone Air*).

9.2 Importando um arquivo DXF - Altenativa "AUTOCAD"

Obs: O VisualDOE identifica imagens de polígonos desenhados em AutoCAD (comando PLINE) exportados no formato DXF (versão inferior à R12).

Selecione a alternativa **AutoCAD**, na barra de ferramentas: *Alternative* → *AutoCAD*.

- Delete o bloco existente;
- Entre na janela Custom Block Editor, arrastando o último padrão geométrico à direita, no folder Blocks (procedimento idêntico ao executado para a alternativa CAD);
- Abra o arquivo no diretório \Visdoe2\Project\imagem.dxf. (Na barra de ferramentas: File → Open DXF File);
- Na lista de Layers (*List of Layers* à direita), escolha a primeira opção (0);
- Na caixa de diálogo que aparece, escolha a opção No, para em seguida fixar a escala 1;
- Na próxima caixa diálogo, clique em Yes desde que as dimensões citadas sejam 20 x 50.
- Na lista de polígonos, marque Polygon1 e clique sobre o botão Add to Model;
- Faça o mesmo para os outros 2 polígonos;
- Para sair desta janela, clique sobre *Edit Mode* e, em seguida, sobre *Exit and Update*.

Após a caracterização geométrica, caracterize as formas de uso das zonas com os *defaults* do programa, (repasse as características definidas nos folders: *Blocks*, *Zones*, *Facades*, *Systems* e *Zone Air*), **MODIFICANDO A ZONA DA DIREITA/FRENTE PARA NÃO CONDICIONADA**.

9.3 Avaliação dos resultados da alternativa "AUTOCAD"

Avalie a evolução da temperatura das zonas da esquerda (1Zone1 – condicionada) e da direita frontal (1Zone2 – não condicionada) para o dia de pico de carga térmica (relatório SS-J), através do *Graphs* e do arquivo de saída *.h0.

- → Temperatura máxima/hora na zona climatizada para o período de ocupação (das 6h às 18h)
 Temperatura: _____°C Hora: ____h.
- → Temperatura máxima/hora na zona não climatizada para o período de ocupação (das 6h às 18h)
 Temperatura: _____°C Hora: ____h.

Evolução de temperatura para a zona direita.

10 SOMBREAMENTO EXTERNO

Para avaliar a importância do sombreamento externo no cálculo de carga térmica são comparados 2 casos a partir de um mesmo projeto.

A partir da alternativa AutoCAD, crie as alternativas:

- EDF: modelamento de um caso com edifícios dos lados;
- BRISE: modelamento de proteções solares nas janelas.

10.1 Alternativa "EDF"

- Vá para Edit → Exterior Shading;
- Crie um painel 10 m à esquerda (X: -10), com 50 m de largura (Width: 50) e 10 m de altura (Height: 10); com as faces reflexivas voltadas para a edificação (Azimuth: 90);
- Crie outro painel com as mesmas dimensões, também com a face reflexiva voltada para a edificação (*Azimuth*: 270). Neste caso, X: 30; Y: 50; *Width*: 50 e *Height*: 10.

10.2 Alternativa "BRISE"

- Na alternativa BRISE, vá para o folder Facades e selecione todas as fachadas;
- Selecione a caixa Exterior Shading, e crie proteções solares verticais e horizontais com 1 m de projeção cada, rentes à edificação.

Overhang Projection: 1
Overhang Distance: 0
Side-fin Projection: 1
Side-fin Distance: 0

10.3 Avaliação dos resultados

⊃ Compare a performance de consumo de energia elétrica das 2 alternativas com proteções solares e o caso AutoCAD, identificando o mais econômico.

Alternativa	Consumo anual
AutoCAD	MWh
EDF	MWh
BRISE	MWh

→ Identifique os picos de carga térmica para cada modelo (relatórios SS-J):

Alternativa	Pico de carga térmica
AutoCAD	kW
EDF	kW
BRISE	kW

11 EDIÇÃO DE MATERIAIS CONSTRUTIVOS

A partir do caso base, propõe-se a análise de duas alternativas:

- **Const-BR**: emprego de elementos construtivos brasileiros;
- **Laje Isolada**: emprego de cobertura isolada termicamente.

11.1 Alternativa "Const-BR"

O modelamento do elemento construtivo é feito no *Construction Editor* (Caminho: *Window* **>** *Construction Editor*).

Os elementos construtivos nacionais propostos devem ter as seguintes características:

- **Parede Nacional:** tijolo maciço de 10 cm com reboco de 2 cm em ambos os lados, e com pintura clara (30% de absortividade);
- Cobertura Nacional: cobertura de laje maciça com 10 cm de espessura, espaço de ar com 10 cm de altura e telha de fibrocimento (70% de absortividade);
- **Piso Nacional:** concreto com espessura de 5 cm e revestimento cerâmico de 1 cm.

O procedimento consiste em criar materiais, no folder *Materials*, que são agrupados em camadas no folder *Constructions*.

Observa-se que na lista de componentes do folder *Materials*, alguns materiais citados acima já existem e outros devem ser criados – é o caso do tijolo de 10 cm (*masonry*) e laje de 10 cm (*concrete*).

O tijolo de 10 cm pode ser criado a partir do Tijolo 14 cm, apenas atribuindo uma nova espessura.

A laje de 10 cm pode ser criada a partir do *Concreto 14 cm*, apenas corrigindo-se a espessura para 10 cm.

11.1.1 Tijolo de 10 cm

- 1) Escolha o tipo do material (*Type*): *Masonry*;
- 2) Selecione um material de referência, como o tijolo de 14 cm, por exemplo;
- 3) Vá em *Edit* → *Add New*;
- 4) Renomeie o novo material para *Tijolo* 10 cm;
- 5) Corrija a espessura (*Thickness*) do material para 100 mm.

Obs: clique com o mouse sobre o novo nome (para garantir que as informações sejam gravadas na biblioteca).

11.1.2 Parede Nacional

- 1) Selecione *Walls* no menu tipo (*Type*);
- 2) Na lista de categorias (*Category*), escolha *Light*;
- Em Assembly, escolha uma composição similar a que se deseja criar:
- 4) Clique em $Edit \rightarrow Add New$;
- 5) Renomeie o elemento para *Parede Nacional* (clique com o mouse sobre
 o novo nome para garantir que as
 informações sejam gravadas na
 biblioteca);
- 6) Entre com um baixo valor de absortividade, como 30%;
- 7) Escolha três camadas (*Layers*);
- 8) Escolha os materiais de cada camada na ordem de fora para dentro, clicando no canto direito de cada caixa.

11.1.3 Cobertura Nacional e Piso Nacional

Proceda da mesma forma para adicionar a *Cobertura Nacional* e o *Piso Nacional*, sendo que a cobertura é um elemento do tipo *Roof* e o piso do tipo *Floor*.

11.2 Alternativa "Laje Isolada"

A alternativa **Laje Isolada** deve usar a mesma cobertura nacional criada para a alternativa anterior, porém deve ter a adição de um outro elemento: *Poliuretano expandido p/ coberturas (e=25mm)*, colocado abaixo da telha de fibrocimento. Os demais elementos para piso e parede devem ser os nacionais.

11.3 Avaliação dos resultados

➡ Identifique os picos de carga térmica para cada alternativa:

Alternativa	Pico de carga termica
Base Case	kW
Const-BR	kW
Laej Isolada:	kW

\Box	Onal a	fonte	de carga	térmica	ane	mais	aumentou	em	relação	ao caso	hase?
•	Quai a	TOTIC	uc carga	willia	que	mais	aumentou	CIII	rciação	ao cas	J base :

R: . . .

12 DAYLIGHT CONTROL

A partir do caso base propõe-se uma alternativa que use a iluminação artificial combinada com a luz natural, utilizando-se o recurso *Daylight Control*, no folder *Zone*.

A proposta é declarar um sistema de iluminação com controle automático que permite a redução da potência à medida que a contribuição de luz natural seja suficiente para garantir 300 lux no plano de trabalho. Crie a alternativa **Daylight**.

12.1 Caracterização

- No folder Zones, selecione as 4 zonas externas (1Front, 1Left, 1Back e 1Right);
- Na variável Daylight Control, selecione Dimming;
- Na variável illuminance, digite 300;
- Na variável *Control Fraction*, opte por controle total, isto é, o valor 1.

Atenção: a única zona que não pode ser caracterizada com *daylight control* é a *Interior Zone*, pois não possui aberturas para permitir a entrada de luz natural.

12.2 Avaliação dos resultados

→ Verifique o consumo anual de energia elétrica do caso base e da alternativa que considera o aproveitamento de luz natural.

Alternativa	Consumo anual
Base Case	kWh
Daylight	kWh

13 EMPREGO DE DAYLIGHT CONTROL COM VARIAÇÃO DE WWR (WINDOW WALL RATIO)

Propõe-se o estudo de redução do consumo de energia elétrica empregando mais iluminação natural e reduzindo a carga térmica do ar condicionado, a partir da variação do formato das aberturas, mantendo a mesma área de janela.

13.1 Caracterização

A partir do caso anterior, crie uma alternativa chamada **Daylight+WWR**, com novas dimensões de janela:

- Largura x altura (width x height): 1.05 m x 3.00 m;
- Parapeito (*sill height*): 2.0 m.

13.2 Avaliação dos resultados

➤ Verifique o consumo anual de energia elétrica do caso base, da alternativa que considera o aproveitamento de luz natural e da alternativa que considera a variação da forma das aberturas.

Alternativa	Consumo anual
Base Case	kWh
Daylight	kWh
Daylight+WWR	kWh

14 VARIAÇÃO DO SISTEMA DE CONDICIONAMENTO DE AR (HVAC)

Para comparar diferentes HVACs, propõe-se a criação de 3 alternativas a partir do caso base:

14.1 Alternativa "PSZ EER 1.9"

Alteração da eficiência do resfriador do Systems para 1.9 W/W.

- Clique sobre ícone que representa o resfriador, no HVAC Systems Editor;
- No folder do meio (*DX Specification*), altere o EER para 1.9.

14.2 Alternativa "SZS"

Alteração do Systems para Single Zone Variable Temperature Systems.

- No folder *Cooling* (obtido ao clicar sobre o *HVAC Systems Editor*), escolha a opção *Water Coils*, conforme a figura abaixo;
- No *Central Plant Editor*, escolha a opção de 1 resfriador de líquido.

14.3 Alternativa "SZS COP=0.2"

Alteração do Coeficiente de Performance (COP) do resfriador de líquido da alternativa anterior para o valor 0.2.

• Clique sobre o resfriador de líquido e altere o valor do COP para 0.2.

14.4 Avaliação dos resultados

➤ Verifique o consumo anual de energia elétrica do caso base e de cada alternativa de variação do sistema de condicionamento de ar (HVAC).

Alternativa	Consumo do cooling
Base Case	kWh
PSZ EER 1.9	kWh
SZS	kWh
SZS COP=0.2	kWh

